
ASPECTS OF STRING PHENOMENOLOGY IN PARTICLE

PHYSICS AND COSMOLOGY

I. Antoniadis1,2

1 LPTHE, UMR CNRS 7589 Sorbonne Universités, UPMC Paris 6, F-75005 Paris
2 A.Einstein Center, Institute for Theoretical Physics, Bern U, Sidlerstrasse 5, CH-3012 Bern

ABSTRACT. We discuss possible connections be-
tween several scales in particle physics and cosmology,
such the the electroweak, inflation, dark energy and
Planck scales. We then describe the phenomenology of
a model of supersymmetry breaking in the presence of
a tiny (tunable) positive cosmological constant. The
model is coupled to the MSSM, leading to calculable
soft supersymmetry breaking masses and a distinct
low energy phenomenology that allows to differentiate
it from other models of supersymmetry breaking and
mediation mechanisms.
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1. Introduction

If String Theory is a fundamental theory of Nature
and not just a tool for studying systems with strongly
coupled dynamics, it should be able to describe at
the same time particle physics and cosmology, which
are phenomena that involve very different scales from
the microscopic four-dimensional (4d) quantum grav-
ity length of 10−33 cm to large macroscopic distances of
the size of the observable Universe ∼1028 cm spanned a
region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very dif-
ferent scales with very different physics corresponding
to the electroweak, dark energy and inflation. These
scales might be related via the scale of the underly-
ing fundamental theory, such as string theory, or they
might be independent in the sense that their origin
could be based on different and independent dynam-
ics. An example of the former constrained and more
predictive possibility is provided by TeV strings with
a fundamental scale at low energies due for instance to
large extra dimensions transverse to a four-dimensional
braneworld forming our Universe [1]. In this case,
the 4d Planck mass is emergent from the fundamental
string scale and inflation should also happen around
the same scale [2]. We will first review this possibility,
focussing on its compatibility with cosmological obser-
vations.

We will then adopt a second more conservative ap-
proach, assuming that all three scales have an inde-
pendent dynamical origin. Moreover, we will assume
the presence of low energy supersymmetry that allows
for an elegant solution of the mass hierarchy problem,
a unification of fundamental forces as indicated by low
energy data and a natural dark matter candidate due to
an unbroken R-parity. The assumption of independent
scales implies that supersymmetry breaking should be
realized in a metastable de Sitter vacuum with an in-
finitesimally small (tunable) cosmological constant in-
dependent of the supersymmetry breaking scale that
should be in the TeV region. In a recent work [3],
we studied a simple N = 1 supergravity model hav-
ing this property and motivated by string theory. Be-
sides the gravity multiplet, the minimal field content
consists of a chiral multiplet with a shift symmetry
promoted to a gauged R-symmetry using a vector mul-
tiplet. In the string theory context, the chiral mul-
tiplet can be identified with the string dilaton (or an
appropriate compactification modulus) and the shift
symmetry associated to the gauge invariance of a two-
index antisymmetric tensor that can be dualized to a
(pseudo)scalar. The shift symmetry fixes the form of
the superpotential and the gauging allows for the pres-
ence of a Fayet-Iliopoulos (FI) term, leading to a super-
gravity action with two independent parameters that
can be tuned so that the scalar potential possesses a
metastable de Sitter minimum with a tiny vacuum en-
ergy (essentially the relative strength between the F-
and D-term contributions). A third parameter fixes the
Vacuum Expectation Value (VEV) of the string dila-
ton at the desired (phenomenologically) weak coupling
regime. An important consistency constraint of our
model is anomaly cancellation which has been studied
in [5] and implies the existence of additional charged
fields under the gauged R-symmetry.

In a more recent work [6], we analyzed a small vari-
ation of this model which is manifestly anomaly free
without additional charged fields and allows to couple
in a straight forward way a visible sector containing
the minimal supersymmetric extension of the Standard
Model (MSSM) and studied the mediation of super-
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symmetry breaking and its phenomenological conse-
quences. It turns out that an additional ‘hidden sector’
field z is needed to be added for the matter soft scalar
masses to be non-tachyonic; although this field partic-
ipates in the supersymmetry breaking and is similar to
the so-called Polonyi field, it does not modify the main
properties of the metastable de Sitter (dS) vacuum.
All soft scalar masses, as well as trilinear A-terms, are
generated at the tree level and are universal under the
assumption that matter kinetic terms are independent
of the ‘Polonyi’ field, since matter fields are neutral
under the shift symmetry and supersymmetry break-
ing is driven by a combination of the U(1) D-term and
the dilaton and z-field F-term. Alternatively, a way to
avoid the tachyonic scalar masses without adding the
extra field z is to modify the matter kinetic terms by
a dilaton dependent factor.
A main difference of the second analysis from the

first work is that we use a field representation in which
the gauged shift symmetry corresponds to an ordinary
U(1) and not an R-symmetry. The two representa-
tions differ by a Kähler transformation that leaves
the classical supergravity action invariant. However,
at the quantum level, there is a Green-Schwarz term
generated that amounts an extra dilaton dependent
contribution to the gauge kinetic terms needed to
cancel the anomalies of the R-symmetry. This creates
an apparent puzzle with the gaugino masses that
vanish in the first representation but not in the latter.
The resolution to the puzzle is based to the so called
anomaly mediation contributions [7, 8] that explain
precisely the above apparent discrepancy. It turns out
that gaugino masses are generated at the quantum
level and are thus suppressed compared to the scalar
masses (and A-terms).

2. Effective Planck mass and the inflation
scale

Low scale gravity with large extra dimensions is ac-
tually a particular case of a more general framework,
where the UV cutoff is lower than the Planck scale due
to the existence of a large number of particle species
coupled to gravity [9]. Indeed, it was shown that the
effective UV cutoff MUV is given by

M2
UV =M2

P /N , (1)

where the counting of independent species N takes into
account all particles which are not broad resonances,
having a width less than their mass. For instance, in
braneworld gravity with n large extra dimensions of av-
erage size R, the particle species are the Kaluza-Klein
(KK) excitations of the graviton (and other possible
bulk modes), whose number at a given energy scale E∗
is given by

N ≃ RnEn∗ . (2)

Here, we work out the consequences of this scale de-
pendence of the strength of gravity for inferring var-
ious quantities during inflation [2], which we take to
be driven by a single field for economy of discussion
and because the data doesn’t compel us to consider
otherwise [10]. As is to be expected, all dimensionless
observables such as the amplitude and spectral proper-
ties of the perturbations are unaffected by the changing
strength of gravity at inflationary energies. However,
when one tries to infer an absolute energy scale for
inflation, one finds that it is undetermined commen-
surate with (1) up to the unknown spectrum of uni-
versally coupled species between laboratory scales and
the inflationary scale, the details of which we elaborate
upon in the following.
According to the inflationary paradigm, the primor-

dial perturbations observed in the CMB were created
at horizon crossing during the quasi de Sitter (dS)
phase of early accelerated expansion sourced by the
inflaton field. Therefore all quantities that enter cal-
culations of primordial correlation functions (which we
subsequently relate to observables in the CMB) refer
to quantities at the scale at which inflation occurred.
We denote all quantities measured at the scale of in-
flation with a starred subscript. The dominant con-
tribution to the temperature anisotropies comes from
adiabatic perturbations 1 sourced by the comoving cur-
vature perturbation R, defined as the conformal factor
of the 3-metric hij in comoving gauge:

hij(t, x) = a2(t)e2R(t,x)ĥij ; ĥij := exp[γij ] (3)

with ∂iγij = γii = 0 defining transverse traceless gravi-
ton perturbations. The temperature anisotropies are
characterized by the dimensionless power spectrum for
R, whose amplitude is given by

PR :=
H2

∗
8π2M2

∗ ϵ∗
= A× 10−10, (4)

where ϵ∗ := −Ḣ∗/H
2
∗ , H∗ being the Hubble factor dur-

ing inflation. Given that R is conserved on super-
horizon scales (in the absence of entropy perturba-
tions), this immediately relates to the amplitude of the
late time CMB anisotropies, which fixesA ∼ 22.15 [10].
The tensor anisotropies are characterized by the tensor
power spectrum

Pγ := 2
H2

∗
π2M2

∗
, (5)

Taking the ratio of the above with (4), we find the
tensor to scalar ratio

r∗ :=
Pγ
PR

= 16ϵ∗. (6)

1In what follows, we assume that all of the extra species have
sufficiently suppressed couplings to the inflaton during inflation
(e.g. either through derivative couplings or as Planck suppressed
interactions) so that isocurvature perturbations are not signifi-
cantly generated. This is trivially true for hidden sector fields.
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Therefore any determination of r∗, either through di-
rect measurements of the stochastic background of pri-
mordial gravitational waves or through their secondary
effects on the polarization of the CMB [11, 12, 13] al-
lows us in principle to fix the scale of inflation:

H∗ =M∗

(
π2Ar∗
2 · 1010

)1/2

:= Υ = 1.05
√
r∗ × 10−4. (7)

We see that any measurements of r∗ determines the
scale of inflation up to our ignorance of the effective
strength of gravity at the scale H∗, given byM∗ ∼ MP√

N
,

where N is the effective number of all universally cou-
pled species up to the scale H∗– whether they exist in
the visible sector or in any hidden sector. Note that
as one lowers the scale of strong gravity, the maximum
reheating temperature Ti is necessarily lowered as well,
since it cannot be higher than the inflation scale. Con-
servatively, Ti cannot be too far below the TeV scale
without spoiling the standard scenarios of big bang
cosmology– in particular, mechanisms for Leptogene-
sis and Baryogenesis which can occur no lower than
the electroweak scale [14]. We note as a consistency
check on the above considerations, that although addi-
tional species increase the strength of gravity, the ratio
H2

∗/M
2
∗ is independent of N and is fixed by observ-

able quantities. Therefore the effects of strong gravity
are evidently negligible during inflation even if M∗ is
much smaller than the macroscopic strength of gravity
Mpl. Hence inflationary dynamics, in particular the
dynamics of adiabatic fluctuations remain weakly cou-
pled independent of N and the usual computation of
adiabatic correlators can be implemented [15].
In the case of extra species as KK graviton modes,

the fundamental higher-dimensional gravity scale (1)
with N given in (2) for E∗ = MUV leads to the usual
relation between the 4d and (4 + n) d Planck scales

M2
P =M2+n

UV Rn . (8)

On the other hand, during inflation N counts all KK
states with mass less than the Hubble scale H∗:

N = (H∗R)
n , (9)

and the effective gravity scale becomes

M∗ =MP /
√
N =MUV (MUV /H)n/2 , (10)

where we used the relations (8) and (10). Equation (7)
then yields:

H∗ =M∗Υ =MUV (MUV /H)n/2Υ ⇒ MUVΥ
2/(n+2) ,

(11)
where we used eq. (10). It follows that H∗ is one to
three orders of magnitude below the fundamental grav-
ity scaleMUV for the range 0.001 <∼ r∗ <∼ 0.1. The ratio
H∗/M∗ is of course fixed by (7). The inflation scale H∗

can then be as low as the weak scale in low scale gravity
models with large extra dimensions, consistently with
observations.
In the following, we assume that the electroweak,

inflation, gravity and dark energy scales have an
independent dynamical origin and examine the corre-
sponding conditions to the microscopic theories. More
precisely, we address the question of supersymmetry
breaking in dS space with an infinitesimal (tunable)
cosmological constant.

3. Conventions

Throughout this paper we use the conventions of
[16]. A supergravity theory is specified (up to Chern-
Simons terms) by a Kähler potential K, a superpoten-
tial W , and the gauge kinetic functions fAB(z). The
chiral multiplets zα, χα are enumerated by the index
α and the indices A,B indicate the different gauge
groups. Classically, a supergravity theory is invariant
under Kähler tranformations, viz.

K(z, z̄) −→ K(z, z̄) + J(z) + J̄(z̄),

W (z) −→ e−κ
2J(z)W (z), (12)

where κ is the inverse of the reduced Planck mass,
mp = κ−1 = 2.4 × 1015 TeV. The gauge transforma-
tions of chiral multiplet scalars are given by holomor-
phic Killing vectors, i.e. δzα = θAkαA(z), where θ

A is
the gauge parameter of the gauge group A. The Kähler
potential and superpotential need not be invariant un-
der this gauge transformation, but can change by a
Kähler transformation

δK = θA [rA(z) + r̄A(z̄)] , (13)

provided that the gauge transformation of the super-
potential satisfies δW = −θAκ2rA(z)W . One then has
from δW =Wαδz

α

Wαk
α
A = −κ2rAW, (14)

where Wα = ∂αW and α labels the chiral multiplets.
The supergravity theory can then be described by a
gauge invariant function

G = κ2K + log(κ6WW̄ ). (15)

The scalar potential is given by

V = VF + VD

VF = eκ
2K

(
−3κ2WW̄ +∇αWgαβ̄∇̄β̄W̄

)
VD =

1

2
(Ref)

−1 AB PAPB , (16)

where W appears with its Kähler covariant derivative

∇αW = ∂αW (z) + κ2(∂αK)W (z). (17)



The moment maps PA are given by

PA = i(kαA∂αK − rA). (18)

In this paper we will be concerned with theories
having a gauged R-symmetry, for which rA(z) is given
by an imaginary constant rA(z) = iκ−2ξ. In this case,
κ−2ξ is a Fayet-Iliopoulos [17] constant parameter.

4. The model

The starting point is a chiral multiplet S and a vector
multiplet associated with a shift symmetry of the scalar
component s of the chiral multiplet S

δs = −icθ , (19)

and a string-inspired Kähler potential of the form
−p log(s + s̄). The most general superpotential is ei-
ther a constant W = κ−3a or an exponential superpo-
tential W = κ−3aebs (where a and b are constants).
A constant superpotential is (obviously) invariant un-
der the shift symmetry, while an exponential superpo-
tential transforms as W → We−ibcθ, as in eq. (14).
In this case the shift symmetry becomes a gauged R-
symmetry and the scalar potential contains a Fayet-
Iliopoulos term. Note however that by performing a
Kähler transformation (12) with J = κ−2bs, the model
can be recast into a constant superpotential at the cost
of introducing a linear term in the Kähler potential
δK = b(s + s̄). Even though in this representation,
the shift symmetry is not an R-symmetry, we will still
refer to it as U(1)R. The most general gauge kinetic
function has a constant term and a term linear in s,
f(s) = δ + βs.
To summarise,2

K(s, s̄) = −p log(s+ s̄) + b(s+ s̄),

W (s) = a,

f(s) = δ + βs , (20)

where we have set the mass units κ = 1. The constants
a and b together with the constant c in eq. (19) can
be tuned to allow for an infinitesimally small cosmo-
logical constant and a TeV gravitino mass. For b > 0,
there always exists a supersymmetric AdS (anti-de Sit-
ter) vacuum at ⟨s + s̄⟩ = b/p, while for b = 0 (and
p < 3) there is an AdS vacuum with broken supersym-
metry. We therefore focus on b < 0. In the context of
string theory, S can be identified with a compactifica-
tion modulus or the universal dilaton and (for negative
b) the exponential superpotential may be generated by
non-perturbative effects.

2In superfields the shift symmetry (19) is given by δS = −icΛ,
where Λ is the superfield generalization of the gauge parameter.
The gauge invariant Kähler potential is then given by K(S, S̄) =
−pκ−2 log(S + S̄ + cVR) + κ−2b(S + S̄ + cVR), where VR is the
gauge superfield of the shift symmetry.

The scalar potential is given by:

V = VF + VD

VF = a2e
b
l lp−2

{
1

p
(pl − b)2 − 3l2

}
l = 1/(s+ s̄)

VD = c2
l

β + 2δl
(pl − b)2 (21)

In the case where S is the string dilaton, VD can be
identified as the contribution of a magnetized D-brane,
while VF for b = 0 and p = 2 coincides with the tree-
level dilaton potential obtained by considering string
theory away its critical dimension [18]. For p ≥ 3 the
scalar potential V is positive and monotonically de-
creasing, while for p < 3, its F-term part VF is un-
bounded from below when s + s̄ → 0. On the other
hand, the D-term part of the scalar potential VD is
positive and diverges when s + s̄ → 0 and for vari-
ous values for the parameters an (infinitesimally small)
positive (local) minimum of the potential can be found.
If we restrict ourselves to integer p, tunability of the

vacuum energy restricts p = 2 or p = 1 when f(s) = s,
or p = 1 when the gauge kinetic function is constant.
For p = 2 and f(s) = s, the minimization of V yields:

b/l = α ≈ −0.183268 , p = 2 (22)

a2

bc2
= A2(α) +B2(α)

Λ

b3c2
≈ −50.6602 +O(Λ) (23)

where Λ is the value of V at the minimum (i.e. the
cosmological constant), α is the negative root of the
polynomial −x5+7x4−10x3−22x2+40x+8 compatible
with (23) for Λ = 0 and A2(α), B2(α) are given by

A2(α) = 2e−α
−4 + 4α− α2

α3 − 4α2 − 2α
; B2(α) = 2

α2e−α

α2 − 4α− 2
(24)

It follows that by carefully tuning a and c, Λ can be
made positive and arbitrarily small independently of
the supersymmetry breaking scale. A plot of the scalar
potential for certain values of the parameters is shown
in figure 1.
At the minimum of the scalar potential, for nonzero

a and b < 0, supersymmetry is broken by expectation
values of both an F and D-term. Indeed the F-term
and D-term contributions to the scalar potential are

VF |s+s̄=α
b

=
1

2
a2b2eα

(
1− 2

α

)2

> 0,

VD|s+s̄=α
b

=
b3c2

α

(
1− 2

α

)2

> 0 . (25)

The gravitino mass term is given by

(m3/2)
2 = eG =

a2b2

α2
eα . (26)

Due to the Stueckelberg coupling, the imaginary part
of s (the axion) gets eaten by the gauge field, which ac-
quires a mass. On the other hand, the Goldstino, which
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Figure 1: A plot of the scalar potential for p = 2,
b = −1, δ = 0, β = 1 and a given by equation (23) for
c = 1 (black curve) and c = 0.7 (red curve).

is a linear combination of the fermion of the chiral mul-
tiplet χ and the gaugino λ gets eaten by the gravitino.
As a result, the physical spectrum of the theory con-
sists (besides the graviton) of a massive scalar, namely
the dilaton, a Majorana fermion, a massive gauge field
and a massive gravitino. All the masses are of the same
order of magnitude as the gravitino mass, proportional
to the same constant a (or c related by eq. (23) where
b is fixed by eq. (22)), which is a free parameter of
the model. Thus, they vanish in the same way in the
supersymmetric limit a→ 0.

The local dS minimum is metastable since it can tun-
nel to the supersymmetric ground state at infinity in
the s-field space (zero coupling). It turns out however
that it is extremely long lived for realistic perturbative
values of the gauge coupling l ≃ 0.02 and TeV grav-
itino mass and, thus, practically stable; its decay rate
is [5]:

Γ ∼ e−B with B ≈ 10300 . (27)

5. Coupling a visible sector

The guideline to construct a realistic model keeping
the properties of the toy model described above is to
assume that matter fields are invariant under the shift
symmetry (19) and do not participate in the super-
symmetry breaking. In the simplest case of a canon-
ical Kähler potential, MSSM-like fields ϕ can then be
added as:

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) +
∑

φφ̄,

W = κ−3a+WMSSM , (28)

where WMSSM (ϕ) is the usual MSSM superpotential.
The squared soft scalar masses of such a model can
be shown to be positive and close to the square of
the gravitino mass (TeV2). On the other hand, for
a gauge kinetic function with a linear term in s, β ̸= 0
in eq. (20), the Lagrangian is not invariant under the

shift symmetry

δL = −θβc
8
ϵµνρσFµνFρσ. (29)

and its variation should be canceled. As explained in
Ref. [5], in the ’frame’ with an exponential superpo-
tential the R-charges of the fermions in the model can
give an anomalous contribution to the Lagrangian. In
this case the ‘Green-Schwarz’ term ImsF F̃ can cancel
quantum anomalies. However as shown in [5], with the
minimal MSSM spectrum, the presence of this term re-
quires the existence of additional fields in the theory
charged under the shift symmetry.
Instead, to avoid the discussion of anomalies, we fo-

cus on models with a constant gauge kinetic function.
In this case the only (integer) possibility3 is p = 1. The
scalar potential is given by (21) with β = 0, δ = p = 1.
The minimization yields to equations similar to (22),
(23) and (24) with a different value of α and functions
A1 and B1 given by:

b⟨s+ s̄⟩=α ≈ −0.233153

bc2

a2
=A1(α)+B1(α)

Λ

a2b
≈−0.359291+O(Λ)(30)

A1(α)= 2eαα
3− (α− 1)2

(α− 1)2
, B1(α) =

2α2

(α− 1)2
,

where α is the negative root of −3+(α−1)2(2−α2/2) =
0 close to −0.23, compatible with the second constraint
for Λ = 0. However, this model suffers from tachyonic
soft masses when it is coupled to the MSSM, as in
(28). To circumvent this problem, one can add an ex-
tra hidden sector field which contributes to (F-term)
supersymmetry breaking. Alternatively, the problem
of tachyonic soft masses can also be solved if one al-
lows for a non-canonical Kähler potential in the visible
sector, which gives an additional contribution to the
masses through the D-term.
Let us discuss first the addition of an extra hidden

sector field z (similar to the so-called Polonyi field [19]).
The Kähler potential, superpotential and gauge kinetic
function are given by

K = −κ−2 log(s+ s̄) + κ−2b(s+ s̄) + zz̄ +
∑

φφ̄ ,

W = κ−3a(1 + γκz) +WMSSM(φ) ,

f(s) = 1 , fA = 1/g2A , (31)

where A labels the Standard Model gauge group fac-
tors and γ is an additional constant parameter. The
existence of a tunable dS vacuum with supersymmetry

3If f(s) is constant, the leading contribution to VD when s+
s̄ → 0 is proportional to 1/(s+s̄)2, while the leading contribution
to VF is proportional to 1/(s + s̄)p. It follows that p < 2; if
p > 2, the potential is unbounded from below, while if p = 2,
the potential is either positive and monotonically decreasing or
unbounded from below when s+ s̄ → 0 depending on the values
of the parameters.
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breaking and non-tachyonic scalar masses implies that
γ must be in a narrow region:

0.5 <∼ γ <∼ 1.7 . (32)

In the above range of γ the main properties of the toy
model described in the previous section remain, while
Rez and its F-auxiliary component acquire non van-
ishing VEVs. All MSSM soft scalar masses are then
equal to a universal value m0 of the order of the grav-
itino mass, while the B0 Higgs mixing parameter is also
of the same order:

m2
0 = m2

3/2

[
(σs + 1) +

(γ + t+ γt)2

(1 + γt)2

]
,

A0 = m3/2

[
(σs + 3) + t

(γ + t+ γt2)

1 + γt

]
,

B0 = m3/2

[
(σs + 2) + t

(γ + t+ γt2)

(1 + γt)

]
, (33)

where σs = −3+(α−1)2 with α and t ≡ ⟨Re z⟩ deter-
mined by the minimization conditions as functions of
γ. Also, A0 is the soft trilinear scalar coupling in the
standard notation, satisfying the relation [20]

A0 = B0 +m3/2 . (34)

On the other hand, the gaugino masses appear to
vanish at tree-level since the gauge kinetic functions
are constants (see (31)). However, as mentioned in
Section , this model is classically equivalent to the the-
ory4

K = −κ−2 log(s+ s̄) + zz̄ +
∑
α

φφ̄,

W =
(
κ−3a(1 + z) +WMSSM(φ)

)
ebs , (35)

obtained by applying a Kähler transformation (12)
with J = −κ−2bs. All classical results remain the
same, such as the expressions for the scalar poten-
tial and the soft scalar masses (33), but now the shift
symmetry (19) of s became a gauged R-symmetry
since the superpotential transforms asW −→We−ibcθ.
Therefore, all fermions (including the gauginos and the
gravitino) transform5 as well under this U(1)R, lead-
ing to cubic U(1)3R and mixed U(1) × GMSSM anoma-
lies. These anomalies are cancelled by a Green-Schwarz
(GS) counter term that arises from a quantum correc-
tion to the gauge kinetic functions:

fA(s) = 1/g2A + βAs with βA =
b

8π2
(TRA

− TGA
) ,

(36)

4This statement is only true for supergravity theories with a
non-vanishing superpotential where everything can be defined in
terms of a gauge invariant function G = κ2K+log(κ6WW̄ ) [21].

5The chiral fermions, the gauginos and the gravitino carry a
charge bc/2, −bc/2 and −bc/2 respectively.

where TG is the Dynkin index of the adjoint repre-
sentation, normalized to N for SU(N), and TR is the
Dynkin index associated with the representation R of
dimension dR, equal to 1/2 for the SU(N) fundamen-
tal. An implicit sum over all matter representations is
understood. It follows that gaugino masses are non-
vanishing in this representation, creating a puzzle on
the quantum equivalence of the two classically equiva-
lent representations. The answer to this puzzle is based
on the fact that gaugino masses are present in both rep-
resentations and are generated at one-loop level by an
effect called Anomaly Mediation [7, 8]. Indeed, it has
been argued that gaugino masses receive a one-loop
contribution due to the super-Weyl-Kähler and sigma-
model anomalies, given by [8]:

M1/2 = − g2

16π2
×
[
(3TG − TR)m3/2 + (TG − TR)KαFα

+2
TR
dR

(log detK|R ′′),αF
α

]
. (37)

The expectation value of the auxiliary field Fα, evalu-
ated in the Einstein frame is given by

Fα = −eκ
2K/2gαβ̄∇̄β̄W̄ . (38)

Clearly, for the Kähler potential (31) or (35) the last
term in eq. (37) vanishes. However, the second term
survives due to the presence of Planck scale VEVs for
the hidden sector fields s and z. Since the Kähler po-
tential between the two representations differs by a lin-
ear term b(s+ s̄), the contribution of the second term
in eq. (37) differs by a factor

δmA =
g2A
16π2

(TG − TR)be
κ2K/2gαβ̄∇̄β̄W̄ , (39)

which exactly coincides with the ‘direct’ contribution
to the gaugino masses due to the field dependent gauge
kinetic function (36) (taking into account a rescaling
proportional to g2A due to the non-canonical kinetic
terms).
We conclude that even though the models (31) and

(35) differ by a (classical) Kähler transformation, they
generate the same gaugino masses at one-loop. While
the one-loop gaugino masses for the model (31) are
generated entirely by eq. (37), the gaugino masses for
the model (35) after a Kähler transformation have a
contribution from eq. (37) as well as from a field de-
pendent gauge kinetic term whose presence is necessary
to cancel the mixed U(1)R × G anomalies due to the
fact that the extra U(1) has become an R-symmetry
giving an R-charge to all fermions in the theory. Using
(37), one finds:

M1/2=− g2

16π2
m3/2[(3TG − TR)−

(TG − TR)

(
(α− 1)2 + t

γ + t+ γt2

1 + γt

)]
(40)
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For U(1)Y we have TG = 0 and TR = 11, for SU(2)
we have TG = 2 and TR = 7, and for SU(3) we have
TG = 3 and TR = 6, such that for the different gaugino
masses this gives (in a self-explanatory notation):

M1 =11
g2Y
16π2

m3/2

[
1− (α− 1)2 − t(γ + t+ γt)

1 + γt

]
,

M2 =
g22

16π2
m3/2

[
1− 5(α− 1)2 − 5

t(γ + t+ γt2)

1 + γt

]
,

M3 =−3
g23

16π2
m3/2

[
1+(α− 1)2+

t(γ + t+ γt2)

1 + γt

]
(41)

6. Phenomenology

The results for the soft terms calculated in the pre-
vious section, evaluated for different values of the pa-
rameter γ are summarised in Table 1. For every γ,
the corresponding t and α are calculated by impos-
ing a vanishing cosmological constant at the minimum
of the potential. The scalar soft masses and trilinear
terms are then evaluated by eqs. (33) and the gaugino
masses by eqs. (41). Note that the relation (34) is
valid for all γ. We therefore do not list the parameter
B0.
In most phenomenological studies, B0 is substituted

for tanβ, the ratio between the two Higgs VEVs, as an
input parameter for the renormalization group equa-
tions (RGE) that determine the low energy spectrum
of the theory. Since B0 is not a free parameter in our
theory, but is fixed by eq. (34), this corresponds to
a definite value of tanβ. For more details see [22]
(and references therein). The corresponding tanβ for
a few particular choices for γ are listed in the last two
columns of table 1 for µ > 0 and µ < 0 respectively. No
solutions were found for γ <∼ 1.1, for both signs of µ.
The lighest supersymmetric particle (LSP) is given by
the lightest neutralino and sinceM1 < M2 (see table 1)
the lightest neutralino is mostly Bino-like, in contrast
with a typical mAMSB (minimal anomaly mediation
supersymmetry breaking) scenario, where the lightest
neutralino is mostly Wino-like [23].
To get a lower bound on the stop mass, the sparticle

spectrum is plotted in Figure 2 as a function of the
gravitino mass for γ = 1.1 and µ > 0 (for µ < 0
the bound is higher). The experimental limit on
the gluino mass forces m3/2 >∼ 15 TeV. In this limit
the stop mass can be as low as 2 TeV. To conclude,
the lower end mass spectrum consists of (very) light
charginos (with a lightest chargino between 250 and
800 GeV) and neutralinos, with a mostly Bino-like
neutralino as LSP (80 − 230 GeV), which would
distinguish this model from the mAMSB where the
LSP is mostly Wino-like. These upper limits on the
LSP and the lightest chargino imply that this model
could in principle be excluded in the next LHC run.

20 25 30 35 40 45
m32 HTeVL

5

10

15

20

25

30

35

TeV

Figure 2: The masses (in TeV) of the sbottom (yellow),
stop (black), gluino (red), lightest chargino (green) and
lightest neutralino (blue) as a function of m3/2 for γ =
1.1 and for µ > 0. No solutions to the RGE were found
when m3/2 >∼ 45 TeV. The lower bound corresponds to
a gluino mass of 1 TeV.

In order for the gluino to escape experimental bounds,
the lower limit on the gravitino mass is about 15
TeV. The gluino mass is then between 1-3 TeV. This
however forces the squark masses to be very high
(10 − 35 TeV), with the exception of the stop mass
which can be relatively light (2− 15 TeV).

7. Non-canonical Kähler potential for the
visible sector

As mentioned already in Section 4, an alternative
way to avoid tachyonic soft scalar masses for the MSSM
fields in the model (28), instead of adding the extra
Palonyi-type field z in the hidden sector, is by introduc-
ing non-canonical kinetic terms for the MSSM fields,
such as:

K=−κ−2log(s+ s̄)+κ−2b(s+ s̄)+(s+ s̄)−ν
∑

φφ̄

W =κ−3a+WMSSM ,

f(s)= 1, fA(s) = 1/g2A , (42)

where ν is an additional parameter of the theory, with
ν = 1 corresponding to the leading term in the Taylor
expansion of − log(s+ s̄−φφ̄). Since the visible sector
fields appear only in the combination φφ̄, their VEVs
vanish provided that the scalar soft masses squared
are positive. Moreover, for vanishing visible sector
VEVs, the scalar potential and is minimization remains
the same as in eqs. (refbsalpha). Therefore, the non-
canonical Kähler potential does not change the fact
that the F-term contribution to the soft scalar masses
squared is negative. On the other hand, the visible
fields enter in the D-term scalar potential through the
derivative of the Kähler potential with respect to s.
Even though this has no effect on the ground state of
the potential, the φ-dependence of the D-term scalar
potential does result in an extra contribution to the
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γ t α m0 A0 M1 M2 M3 tanβ(µ > 0) tanβ(µ < 0)

0.6 0.446 -0.175 0.475 1.791 0.017 0.026 0.027

1 0.409 -0.134 0.719 1.719 0.015 0.025 0.026

1.1 0.386 -0.120 0.772 1.701 0.015 0.024 0.026 46 29

1.4 0.390 -0.068 0.905 1.646 0.014 0.023 0.026 40 23

1.7 0.414 -0.002 0.998 1.588 0.013 0.022 0.025 36 19

Table 1: The soft terms (in terms of m3/2) for various values of γ. If a solution to the RGE exists, the value of
tanβ is shown in the last columns for µ > 0 and µ < 0 respectively.

scalar masses squared which become positive

ν > − eα(σs + 1)α

A(α)(1− α)
≈ 2.6 . (43)

The soft MSSM scalar masses and trilinear couplings
in this model are:

m2
0 = κ2a2

(
b

α

)(
eα(σs + 1) + ν

A(α)

α
(1− α)

)
A0 = m3/2(s+ s̄)ν/2 (σs + 3) (44)

B0 = m3/2(s+ s̄)ν/2 (σs + 2)

where σs is defined as in (33), eq. (31) has been used
to relate the constants a and c, and corrections due to
a small cosmological constant have been neglected. A
field redefinition due to a non-canonical kinetic term
gφφ̄ = (s + s̄)−ν is also taken into account. The main
phenomenological properties of this model are not ex-
pected to be different from the one we analyzed in sec-
tion with the parameter ν replacing γ. Gaugino masses
are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not
repeat the phenomenological analysis for this model.
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ABSTRACT. We applied discrete cosmology for
investigation of the density profiles of dark matter
(DM) halos of clusters of galaxies. Comparing the
derived velocity dispersion with the experimental data
for the Coma cluster, we found the effective radius
for the mass distribution inside this galaxy cluster.
Our estimates give an opportunity to restrict the
parameters of the Navarro-Frenk-White profile for
considered cluster.

Keywords: dark matter, clusters of galaxies.

It is generally known, our Universe is dark: dark
energy and dark matter contribute approximately
69% and 26% into total mass-energy balance in the
Universe, respectively.

We found potentials, which satisfy the Poisson equa-
tion and give us an opportunity to consider motion of
test massive bodies and light taking into account gravi-
tational attraction to inhomogeneities inside the galax-
ies, groups and clusters of galaxies and cosmological
expansion of the Universe:

△Φ =
1

R

d2

dR2
(RΦ) = 4πGNρph ,

where GN is the Newtonian gravitational constant
and ρph is the physical rest mass density of the bound
system.

After that we introduce the distance radius of
zero acceleration surface (at which the gravitational
attraction and cosmological expansion compensate
each other):

RH =

[
GNM

ä/a

]1/3

Using the NFW density profile of DM halo of clusters
of galaxies as the most commonly used profile:

ρph(R) =
4ρs

R
Rs

(
1 + R

Rs

)2 , Rs = const , ρs = ρ(Rs)

we obtain, with the help of the observable data, the
preferable profile parameters for the Coma cluster:
R200 ≈ 1.77h−1 Mpc = 2.61Mpc and the concentra-
tion parameter c = 3÷ 4

The most galaxies are concentrated inside a sphere
of effective radius Reff ∼ 3.7Mpc for the Coma
cluster (Abell 1656).

We also found line-of-sight velocity dispersion
1004 km s−1. The observations give very close value
1008 km s−1 for this cluster.
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ABSTRACT. The existence of the Hubble flow reces-
sion of galaxies in terms of dominance of dark energy 
density, vacuum energy, reduces the gravitational entropy 
of clusters of galaxies, reducing the gravitational entropy 
of the Universe as a whole. Global dominance of dark 
energy leads to a decrease in entropy of the Universe 
within the cosmic event horizon. 

Keywords: Hubble flow, movement of galaxies, clusters 
of galaxies, dark energy, entropy of the Universe 

 
 
The dominance of dark energy in the modern era leads 

to the dominance of anti-gravitation of gravity on cosmo-
logical scales. I.D.Karachentsev (Karachentsev & 
Kashlbadze, 2006; Karachentsev, 2005; Karachentsev et 
al., 2009; Karachentsev, Karachentseva & Huchtmeier, 
2007) and A.D.Chernin (Chernin, Teerikorpi, Baryshev, 
2003; Chernin et al., 2007; Chernin et al., 2009; Chernin 
et al., 2012; Chernin et al., 2013; Chernin et al., 2007; 
Chernin et al., 2012; Chernin, 2013; Teerikorpi & 
Chernin, 2010), studying the motions of galaxies in clus-
ters, have shown that anti-gravity effects manifest them-
selves not only on a cosmic scale, but the scale of clusters 
of galaxies, for example – the Local Group, including our 
galaxy (the Milky Way) galaxy Andromeda and dozens of 
other smaller galaxies. M. Eingorn and A. Zhuk also stud-
ied in detail these issues (Brilenkov, Eingorn & Zhuk, 
2015; Eingorn & Zhuk, 2012). Observations and modeling 
have shown that at distances of 1–3 Mpc from the center 
of the gravity bounded Local Group of galaxies it is ob-
served the local flow of divergent dwarf galaxies. The 
velocities of these galaxies are proportional to the distance 
from the center. A.D.Chernin et al. (2012) have shown 
that such flows, which are observed in other clusters at 
different scales, form under the influence of dark energy. 
So, for Local Groups zone of zero gravity in which the 
gravitational force is balanced by the force of attraction 
and anti-gravitation is the RZG≈1.3÷1.4 Mpc. Therefore, 
when R>RZG the flow of recession of galaxies starts. 
A.D.Chernin and colleagues studied the behavior of galax-
ies streams, build charts based on experimental data and 
numerical simulation and showed that the phase trajecto-
ries of the local stream tend to phase attractor V=HxR, that 
corresponds to the Hubble law. In this case 
Hx=(8πGρx/3)1/2

 is determined by the local density of dark 
energy (Chernin, 2013). Therefore, when R>RZG flow of 

receding galaxies starts. In this case the phase trajectories 
of the local flow tend to phase attractor V=HxR, that is, 
obey the Hubble law. From experimental diagram of ve-
locities of galaxies we can estimate that the spread of own 
velocities of galaxies with R<RZG reaches 
ΔVmax = ±150 km/s, the average is ΔV= ±70 km/s, while 
when R > RZG velocity spread to the theoretical velocity of 
Hubble divergence flow averages about ΔV= 12 km/s 
(Bukalov, 2014). Antigravity of dark energy, or the energy 
of the vacuum, reduces the dispersion of velocity galaxies. 
The difference in entropy in areas with R < RZG and 
R > RZG is negative, so “evaporation” of the galaxies from 
gravitationally bound clusters reduces its gravitational 
entropy. Thus the antigravitation area causes a decrease in 
entropy of “gas of galaxies” at different levels of the hier-
archy, in clusters and superclusters. In fact, gravitationally 
bound system, such as a group or cluster of galaxies, has 
gravitational entropy more than a galaxy outside the gravi-
tational cluster and moving in an anti-gravitational envi-
ronment. The “evaporation” of the galaxies gravitationally 
bound cluster reduces its gravitational entropy. Thus, the 
area of anti-gravitation causes a decrease in the entropy 
“gas galaxies” at different levels of the hierarchy – in 
clusters and superclusters. 

Based on the results of numerical modeling of flow of 
galaxies recession, in which were obtained the minimum 
and maximum velocity of flow Vmin= 
=HxR(1+2x-3–3x-2)1/2 and Vmax=HxR(1+3x-1/2), where 
x=R/RZG (Chernin, 2013), we can write in general form the 
expression for the entropies difference:  

max min

max min

2
2 2

2
1 1

( )
ln

( )
V V

S
V V


 


.                          (1) 

We have obtained the entropy flow of galaxies similar 
to the gas. But if we use obtained by Chernin A.D. (2013) 
vacuum cooling factor as ratio of velocities, the logarithm 
of the square of this factor also provides an estimate of 
entropy changes. However, we can consider the more 
general expression for the evaluation of gravitational en-
tropy of the system. We express the acceleration as 
equivalent to the Unruh vacuum temperature of acceler-
ated moving body, for example a galaxy: 

2

22 2 2 2 32B B B BB

a g a GM c R
ck ck ck ckck R

     
    
     ,  (2) 
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or taking a positive temperature TG, corresponding to the 
gravitational acceleration g, by analogy with the tempera-
ture of the black holes, we obtain a negative temperature 
value of the vacuum Tv, which corresponds to the anti-
gravity acceleration: ΔkBT=kBTG–kBTv. 

Thus, the entropy Sv is negative, which means that the 
effects of the vacuum can be attributed to the negative 
entropy, or information, that is the ability to the informa-
tion arranging ordering. This explains the shift to the or-
derly movement of galaxies at R>RZG. 

However, on the scale of the Universe there is a similar 
law accelerating recession superclusters of galaxies under 
the influence of dark energy (Chernin, 2013). This means 
that in a similar manner gravitational entropy decreases at 
the level of interaction of superclusters of galaxies also. 
Hence, the dominance of dark energy, or vacuum energy, 
on cosmological scales leads to the orderly movement of 
galaxies at the level of clusters and superclusters, reducing 
gravitational entropy of the Universe as a whole, as was 
shown earlier by the author (Bukalov, 2014). Therefore, in 
the Universe, which is expanding with acceleration under 
the influence of anti-gravity vacuum, gravitational entropy 
due to the contribution of gravitating matter should de-
crease with time. Thus, in the present Universe inside the 
Hubble radius are about 109 clusters of galaxies, like the 
Local Group. With continued accelerated expansion of the 
Universe it will be only a local group. All the other galax-
ies will be an observer outside the event horizon, which 
tends to 1 ,H r

  the radius of de Sitter space. Thus 
gravitational entropy associated with the supercluster of 
galaxies decrease in 109 times. 

Turning to the cosmological scale and the Friedmann 
equation: 

 4 ( 3 ) ( 3 )
3U M M V Va G p a p a

       ,
       

(3) 

where a is the scale factor, from pM=0, ρV= –pV we get 
(Bukalov, 2014).  

4 ( 2 )
3U M V
Ga p a

    .
                      

(4) 

When a≈RH≈1.36∙1026m, 0.318,M   0.682,V   
45 10 ,r
    z=0 

3 4

10 2

4 (0.318(1 ) (1 )
3

42 0.682) 1.046
3

3.46 10 m∙s .
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U
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(8) 

This is the temperature of the quantum radiation of ac-
celerated body to the outside distant observer. According 
to M.B. Mensky (1978) such temperature is negative. 
Therefore for the Universe the entropy change will be: 

522.4 10U U

U

S S
t t


   


J/s.                          (9) 

Thus, when z<0.745, / 0US t   . 
From our results it follows that the vacuum is a reser-

voir of negative entropy, or ordering, which manifests 
itself in the period of its domination. Therefore, the vac-
uum can induce an increase in ordering of the movement 
patterns the universe. This impact is the macroscopic 
quantum cosmological effect. 

The existence of the Hubble flow of receding galaxies 
under the domination of dark energy density, vacuum en-
ergy, leads to a decrease of gravitational entropy of galaxy 
clusters, reducing gravitational entropy of the universe as 
a whole. 

With the gradual disappearance of black holes with their 
entropy and radiation, as well as the galaxies themselves 
over the cosmic event horizon, the entropy of the observ-
able universe will only decrease, and negative entropy, or 
the degree of ordering of information, will increase as-
ymptotically approaching a constant value. 
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ABSTRACT. It is known that in General relativity, for 

some spherically symmetric initial conditions, the 
massless scalar field (SF) experience the gravitational 
collapse (Choptuik, 1989), and arise a black hole (BH). 
According Bekenstein, a BH has no "hair scalar", so the 
SF is completely under the horizon. Thus, the study of the 
final stage for the gravitational collapse of a SF is reduced 
to the construction of a solution of Einstein's equations 
describing the evolution of a SF inside the BH. In this 
work, we build the Lagrangian for scalar and gravitational 
fields in the spherically symmetric case, when the metric 
coefficients and SF depends only on the time. In this case, 
it is convenient to use the methods of classical mechanics. 
Since the metric allows an arbitrary transformation of 
time, then the corresponding field variable (g00) is 
included in the Lagrangian without time derivative. It is a 
non-dynamic variable, and is included in the Lagrangian 
as a Lagrange multiplier. A variation of the action on this 
variable gives the constraint. It turns out that Hamiltonian 
is proportional to the constraint, and so it is zero. The 
corresponding Hamilton-Jacobi equation easily integrated. 
Hence, we find the relation between the SF and the metric. 
To restore of time dependence we using an equation 

qSqL  //   After using a gauge condition, it allows 
us to find solution. Thus, we find the evolution of the SF 
inside the BH, which describes the final stage of the 
gravitational collapse of a SF. It turns out that the mass 
BH associated with a scalar charge G of the corresponding 
SF inside the BH ratio M = G/(2√κ). 

Keywords: scalar field, black hole, Einstein equations. 
 
1. Introduction 
 
One of the most interesting objects in astrophysical and 

cosmological applications of General relativity (GR) is a 
scalar field. However, the models with scalar field known 
only for the simplest configurations, due to the difficulties 
of obtaining analytical solutions. So for a massless scalar 
field in General relativity is widely known spherically 
symmetric static solution of Fisher (1948) and its various 
later modifications (Janis, Newman, Winicour (1968); 
Wyman (1981); Agnese and La Camera. (1985)). 
Analytical solutions for the system of static scalar and 
electromagnetic fields in General relativity for spherical 
symmetry built Bronnikov (1972), Zaitsev, Kolesnikov 
and Radynov (1972), and then Korkina (1976) in different 
coordinate systems. All these solutions are unstable and 

have naked singularity. It turns out that for systems with a 
scalar field analogue of Birkhoff theorem on the 
uniqueness of the solution fails, and in addition, there is 
no conserved scalar charge. Therefore, a static 
configuration with a scalar field which satisfies the 
Einstein equations, due to negligible fluctuations, coming 
out of this mode and begins to evolve. 

For dynamic spherically symmetric problems, due to 
the obvious difficulties in obtaining solutions of Einstein's 
equations in closed form, most of the work performed 
numerically. Roberts (1989) has built one of the few 
analytical solutions in closed form. Initially, he scheduled 
to use it as a counter-example to the hypothesis of cosmic 
censorship. However, later Brady (1994); Oshiro, 
Nakamura and Tomimatsu (1994) rediscovered this 
solution in the context of critical gravitational collapse  

Spherically symmetric collapse of a scalar field is the 
perfect model for studying the dynamics of strong field in 
general relativity. Therefore, in this model used analytical 
and numerical methods. In particular, Christodoulou 
(1987) rigorously established global existence and 
uniqueness of solutions of the Einstein equations for a 
scalar field. He proved that the space of General relativity 
together with spherically symmetric scalar field with a 
sufficiently weak (in some sense) initial data evolves in 
Minkowski space-time, while the class sufficiently strong 
data forms a BH. 

The behavior of the scalar field near the threshold of 
BH formation was first investigated Choptuik (1993). He 
numerically solved the Einstein equations for spherically 
symmetric systems of the gravitational and massless scalar 
fields with minimal coupling. He studied the gravitational 
collapse for different sets of one-parameter families of the 
initial data. For example, they can be taken as a family of 
Gaussian pulses 

)(exp(),0( 22
0

2
/)   p .  

Suppose that for a given family the parameter p is chosen 
in such a way that for small values of p the gravitational 
field in during the evolution of is too weak to form a BH 
(the field is scattered), while for large values of parameter 
p is formed BH. Then between these two limits, there is a 
critical value of this parameter p* in which first formed 
the BH. Solutions for which p < p* are called subcritical 
and solving for p > p* – supercritical, respectively. 
Choptuik proved that in the collapse may occur arbitrarily 
small BH. Moreover, when p > p* the mass of the BH is 
given by  
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*)( pppM BH  ,    

where the exponent β has a universal value   0.374 for 
all 1-parameter families of scalar field data. There are still 
a number of other features critical gravitational collapse of 
a scalar field, for example, discrete and continuous self-
similarity, and others. Work Choptuik is an example of 
when the discovery of a new phenomenon in General 
relativity was done numerically. The discovery of 
universal properties of critical collapse is one of 
significant achievements the numerical relativity 
(Novikov & Frolov, 2001). 

 
2. The action and its reduction 
 
Consider the evolution of spherically symmetric 

massless scalar field in the supercritical case, when p > p*. 
In this case, at the final stage of the gravitational collapse 
is formed the black hole with a mass )( pBHM . The 
residual relaxation phenomena associated with scattering 
of the remnants of the scalar field at infinity, do not affect 
the black hole and can be ignored.  

According to the no-hair theorem Chase (1970) and 
Bekenstein (1972), the BH has no of neutral "scalar hairs" 
(as, indeed, and charged), therefore on the final stage of 
the gravitational collapse a scalar field is completely 
under the horizon, inside a black hole. Beyond the BH, we 
have the free vacuum gravitational field described by the 
Schwarzschild solution. Thus, the study of the final stage 
the gravitational collapse a scalar field, by definition, is to 
construction of the solution of Einstein equations 
describing the evolution of scalar field inside the BH and 
satisfying appropriate boundary conditions. 

In view with the above, we assume that the space-time 
inside a BH is described by the spherically symmetric 
metric, depending on time 

2)(2)(22)(2  dedredtceds ttt  ,   
2222 sin  ddd  .    

For simplicity, consider the evolution of the homogeneous 
scalar field ψ = ψ(t). Note that the metric admits an 
arbitrary gauge transformation time  )~(ttt  , which 
induces the transformation of the metric coefficient 

 2~ ~/ tddtee    .Thus, there is a gauge arbitrariness in 

the definition of the metric function 2Ne  . 
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Here scalar curvature R in this case is equal to 
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where the point denotes 0/ dxd . After the integration over 
the angles, the action takes the form 

 drLdxS 0 ,    
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Since the Lagrangian and the field variables is 
independent from the coordinate r, it possible to be 
limited to the one-dimensional system with the action  


0~ LdxS .    

Extracting total time derivative, we obtain an effective 
Lagrangian 

   242224
2 22

1
22

1~





 ek
ce

k
c

cL  .  

For diagonalization of the Lagrangian, we make a 
change of field variables  

   ,    .  
Then 

  2/
4

2/22
3

2

2

242

1~ 


e
k

c
e

k
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c
L  








 


.  

In the new variables, the metric takes the form 

  22222 drededtceeds     .  
 
3. The equation of Hamilton-Jacobi in the 

minisuperspace 
 
To solve the problem under consideration is convenient 

to use the methods of classical mechanics. From the point 
of view of the classical mechanics, the metric coefficients 
and a scalar field in the resulting Lagrangian are the 
generalized coordinates (coordinates of a minisuperspace 
Wheeler-DeWitt). 

Note that the metric allows arbitrary gauge 
transformation of time, and the corresponding metric 
variable e  enters the Lagrangian without time 
derivative. Therefore, it is a non-dynamic variable and is 
included in the Lagrangian as the Lagrange multiplier. 
Variation of the Lagrangian on this variable gives us the 
constraint: 

  0
444

1~
2/

4
2/22

2

2

2



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
e

k

c
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k

c

c
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

. 

Next, we find momenta, conjugate of the dynamic 
variables },,{  : 

,
~

2/
2










 e

c

L
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 2/

2

4

~
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~

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


 e

k

cL
p 


,   

and Hamiltonian 
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Comparing the Hamiltonian with the constraint, it is easy 
to see that they are proportional 






L
H

~
2 .    

Hence, by virtue of Lagrangian constraint ∂L / ∂ρ = 0 it 
follow the Hamiltonian constraint 
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k
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The latter is a consequence of the invariance of the theory 
with respect to gauge transformations )~(ttt   Next, 
substituting momenta 


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


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S
p , 

 




S
p , 









S
p   

in the Hamiltonian constraint, we come to the Hamilton-
Jacobi  equation (HJE) 


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c
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.  

This equation is one-dimensional minisuperspace 
analogue of the Peres equation in the functional 

derivatives in a superspace. The variable 2/e  is not 
included in the GJE and is not related with the 
minisuperspace dynamics. Thus, the 3-geometry 

minisuperspace with coordinates , 
e , 

e is defined by 
diffeomorphic invariant way. It is easy to see that this 
equation is the GJE for the geodesic in minisuperspace in 
terms minisupermetric (in a potential space). Indeed, let us 
rewrite the action for the diagonalized Lagrangian 
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Nondynamical variable can be eliminated. In order to do 
this we find the variable 2/e  from the constraint 
equation 

  2/22
2

2

2

2
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4
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k
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and substitute into the action. The result is 
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From here we have 
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It is easy to show that the equations resulting from the 
variational principle δS = 0 together with the constraint 
are equivalent to the Einstein equations for the original 

metric. Taking the differential from the action and placed 
in the square, we obtain the interval in a minisuperspace 
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4. Solutions of the Hamilton-Jacobi equation 
 
We are searching the solution GJE in the form  

)( VbaS  . 

Then the function V(ω)is determined by the integral 
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Thus, we find for the action 
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From the relations 
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we find the connection between the scalar field  and 
metric functions λ, e  In order to restore the time 
dependence, we use the equation  


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. 

As a result, we obtain  
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Choosing the gauge condition 
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Hence we obtain the equation 
222 tcBe  . 

Where 
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2 4
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Thus the metric takes the form  

   22222222 dredtcBdtceeds     .  

Furthermore, we find the remaining variables φ and λ, 
as function of time t. From the relations 
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it follows that 
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Taking into account 
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from here we find 
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Thus, the metric and the scalar field inside the BH take 
the form 
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5. Determination constants 
 
To find the constant, we can use the correspondence 

principle. When the scalar field vanishes, the resulting 
solution should be the same with the Schwarzschild 
solution in the T-region. Therefore, we put b0, 0 0. 
Then 
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After replacing 
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This metric coincides with the Schwarzschild solution 
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in the T-region, when we replace cT  R, r ct and choice 
the constants N 1, 2/mca   . Thus, the solution can 
be written in the form 
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where we introduced the scalar charge G cb. 
 
6. Conclusion 
 
In the obtained solution about free scalar field, except 

the scalar charge, any other constants should not be. 
Therefore, we should put m 0 andp0. Then we have 

2c

Gk
B  . 

In this case, the metric and scalar field take the form 
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where we have introduced the constant  

3c

Gk

c

B
tG  . 

We take into account that at a maximum expansion (at the 
boundary of BH), when Gtt  , the scalar field vanishes, 

00  . This metric correspond the scalar field 
confinement under the horizon BH by the gravitational 
interaction.  

Note that the spatial part of the metric describes a 

metric of hypercylinder 1R ⊗ 2S . 
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  222222 dttcdrdl G  .   

Here 22 ttcR G   is the radius of hypercylinder, 

which when time changing within GG ttt   first 

increases 0 R c Gt , and then decreases c Gt  R 0. At 

t Gt  we have a singularity. The radius R  Gt  
corresponds to the horizon in the Schwarzschild metric. 

Note that this solution has an analogue in the R-region, 
which are considered by Denisova at al (1999). Their 
metrics can be rewritten as 
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and physically is not connected with the interior of a black 
hole with collapsing scalar field, because it is another 
solution. 

Note that after replacing the time coordinate 

22
ttT G  , GtT 0 , 

the obtained metric inside a BH with a scalar field takes 
the form  

2222
2

22
2

1/
dTcdr

Tt

dTc
ds

G




 . 

It turns out that scalar curvature 
 gR  and Krechman 

invariant 
 RRK   on the boundary 0t  

)( GtT   are the finite quantities, while in the center, 

when Gtt   (T = 0) they go to infinity. Since the 

boundary 0t  )( GtT   is regular, therefore it can be 
matched with the external vacuum solution for the BH, i.e. 
with the Schwarzschild metric. From the matched 
condition of the angular parts of the metrics, we obtain the 
relation between the scalar charge G, collapsed scalar 
field, and the BH mass M: 

kMG 2 .    

Note that the mass function 

  2
2

1
2

RR
k

c
M  , 

for the given solution takes the form 

22

222

2 ttc

tc

k

c
M

G

G


 . 

Hence, at the boundary value of time t = 0, we have 

k

G
ct

k

c
M G

22
)0(

2

 . 

This again confirms the connection the BH mass with the 
scalar charge into the BH. In the center of t tG and mass 
function diverge. 

 
Figure 1: The behavior of the mass function and the 
hypercylinder radius in universe with homogeneous scalar 
field. 

 
 
The behavior of the mass function and the 

hypercylinder radius represented on the figure 1. 
Here, the ordinate represents time t, and abscissa is the 

radius of hypercylinder R and the mass function M. We 
see that when the time changes from Gt  to 

33 /2/ ckMcGktG   the hypercylinder radius grows 
from zero, reaches the maximum is equal to 

22 /2/ ckMcGkctG   at t = 0 and then decreases 
again to zero. At the same time the mass function 
simultaneously decreases and reaches a minimum is equal 

of the mass BHG MkGktcM  2/2/)0( 3  external 
BH at  t = 0 is and rises again to infinity. 

Therefore, we obtained formulas describing the 
evolution of the homogeneous scalar field inside the BH. 
It corresponds to the final stage of the gravitational 
collapse some scalar field with such initial conditions that 
lead to the homogeneous distribution of the scalar field 
inside the BH. 
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ABSTRACT. A stationary, spherically symmetric,
5D Kaluza-Klein theory exhibits 5D boosts. After
reduction of 5D vacuum Einstein action of a diagonal
5D metric, we obtained Einstein equations with
energy-momentum tensor of a massless scalar field.
Applying a 5D boost generates a non-diagonal metric
with an electric field. This electric field is trivial, since
it can be removed by a reverse 5D boost. Existence of
such kind of trivial fields is analyzed on the example
previously known solutions. Transformation properties
of physical fields relative to 5D boosts examined. This
symmetry is a subgroup of SL(3, R) symmetries of 5D
equations, rewritten in 3+ 2-decomposition in station-
ary, spherically symmetric case. This symmetry also
can be used to generate new solutions. The solution
with trivial electric field is obtained from diagonal 5D
metric by a simple symmetry transformation, which
reduces to the coordinate 5D boosts.

Keywords: Kaluza-Klein theory, decomposition,
electric field, symmetry.

1. Introduction

In a framework of the usual 5D Kaluza-Klein the-
ory (KK), we considerM5 space with the following 5D
metric:

(5)ds2 = (5)gABdx
AdxB , (1)

where {A,B = 0, 1, 2, 3, 4} = {µ, ν = 0, 1, 2, 3} ∪ {4},
xµ –are space-time coordinates, x4 = z – fifth coordi-
nate.

As it is known, KK theory is based on two postulates:

1. Cylindrical condition, according to which, the
space M5 admits a space-like Killing vector ξ⃗. In
the corresponding coordinate system it has the
form ξ⃗ = ∂/∂z, that leads to metric’s indepen-
dence of the fifth coordinate z, that is (5)gAB =
(5)gAB (xµ).

2. Closure condition, which states that the spaceM5

is closed relative to coordinate z.

Four dimensional physical space can be derived by di-
mensional reduction of M5 space, and it’s correspond-
ing action. This can be accomplished by orthogonal
4 + 1 splitting of M5 space, and then projecting all
quantities on the physical space-time M4. In result we
get the following form of the 5D metric:

(5)ds2 = (5)gµνdx
µdxν + 2(5)gµ4dx

µdx4 + (5)g44dz
2

= V −1hµνdx
µdxν − V 2 (dz +Aµdx

µ)
2
, (2)

where:

(5)gµν = V −1hµν − V 2AµAν , (3)
(5)g4ν = −V 2Aν ,

(5)g44 = −V 2 . (4)

This splitting leads to the following physical space-time
metric:

hµν = (5)gµν −
(5)g4ν

(5)g4µ
(5)g44

, (5)

and the following electromagnetic field:

Aν =
(5)g4ν
(5)g44

, (6)

while the scalar field is:

V 2 = −
(
ξ⃗, ξ⃗

)
= −(5)g44 . (7)

After orthogonalization of the 5D action

S = − 1

4πL

∫
d5x

√
(5)g (5)R (8)

we extract a full derivative, and then integrating by
the periodic coordinate z we get:

S = − 1

4πL

∫
d4x

√
h

{
(4)R− 1

2

(∇V )
2

V 2
+

+
V 3

4
FµνF

µν

}
. (9)

Using the following natural variable substitution:

V = eφ/
√
3 (10)
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we get the following 5D metric:

(5)ds2 = e−φ/
√
3hµνdx

µdxν −

− e2φ/
√
3 (dz +Aµdx

µ)
2

(11)

and following 4D action of Einstein’s form:

S = − 1

4πL

∫
d4x

√
h

{
(4)R− 1

2
(∇φ)2 +

+
1

4
e
√
3φFµνF

µν

}
. (12)

where Fµν = Aν,µ −Aµ,ν is an electromagnetic tensor,
φ is a massless scalar field.
In summary, 5D variational principle for 5D man-

ifold with a metric that subject to cylindrical and
closure conditions, is equivalent to a 4D variation
principle of a system with an interacting scalar,
electromagnetic and gravitational fields, and above
mentioned action.

2. Stationary space of 5D theory and boosts

Suppose that on M5 space, in addition to the space-
like Killing vector ξ⃗4, there is also a time-like Killing
vector ξ⃗0 = ∂/∂x0 orthogonal to space directions.
Thus we have

ortgonalξ⃗a =
∂

∂xa
(a = 0, 4). (13)

Those two vectors induce a ”2+3 splitting” of M5

space, and the metric becomes:

(5)ds2 = (2)ds2 + (3)ds2

= γab
(
xk

)
dxadxb − hij

(
xk

)
dxidxj ,(14)

where {a, b = 0, 4} and {i, j, k = 1, 2, 3}. The Killing

vector ξ⃗a is subject to the transformations:

η⃗ã = Lbãξ⃗b = Lbã
∂

∂xb
=

∂

∂xã
, (15)

where η⃗ã – new Killing vectors, Lbã – a constant invert-
ible matrix. Herewith, this ”2+3 splitting” of the met-
ric (14) is form invariant. This transformation, can be
also induced by the following linear coordinate trans-
formation {x0, x4} = {xa} :

x̃ã = Lãbx
b , LbãL

ã
c = δbc ,

det
∥∥Lba∥∥ = L0

0L
4
4 − L0

4L
4
0 = ±1 .

In this text we will use only the positive sign. This
transformations keeps the interval (2)ds3 structure un-
changed. While the 2D metric γab(x

k) transforms ac-
cording to:

γ̃ãb̃
(
x̃k

)
= LbãL

b
b̃
γab

(
xk

)
.

Let the metrics γ̃ãb̃
(
x̃k

)
and γab

(
xk

)
are asymptoti-

cally flat, i.e. in spatial infinity our metric metric is
pseudo-euclidean:

lim
r→∞

γab
(
xk

)
= ηab, lim

r→∞
γ̃ãb̃

(
x̃k

)
= ηãb̃ ,

where ηab – is 2D Minkowski tensor. Then:

ηãb̃ = lim
r→∞

γ̃ãb̃
(
x̃k

)
= lim
r→∞

LaãL
b
b̃
γab

(
xk

)
= LaãL

b
b̃
lim
r→∞

γab
(
xk

)
= LaãL

b
b̃
ηab .

Thus, those transformations, at infinity approaches
2D Lorentz transformations, or 5D boosts in {xa} ={
x0 = t, x4 = z

}
coordinates, with a property:

LaãL
b
b̃
ηab = ηãb̃ . (16)

In consequence, we have 2D Lorentz transformations:

x0 =
x̃0 + vx̃4/c√
1− V 2/c2

= x̃0 coshα+ x̃4 sinhα ,

x4 =
x̃4 + vx̃0/c√
1− V 2/c2

= x̃0 sinhα+ x̃4 coshα ,

where:
tanhα =

v

c
,

Herewith, the physical quantities transforms as:

h̃0̃0̃ = − det γab√
−V −1h00 sinh

2 α+ V 2 (A0 sinhα+ coshα)
2
;

Ã0̃ =

(
V −3h00 −A2

0 − 1
)
tanhα−A0

(
1 + tanh2 α

)
V −3h00 tanh

2 α− (A0 tanhα+ 1)
2 ;

Ṽ 2 = −V −1h00 sinh
2 α+ V 2 (A0 sinhα+ coshα)

2
.

Note that the metric’ determinant

det γab = γ00γ44 − (γ04)
2
= −h00

V
= inv (17)

actually an invariant.
Those transformations, physically corresponds to us-

ing a moving frame of reference of the fifth coordinate
x̃4, which according to the Kaluza-Klein postulates, is
closed.
Let our initial metric be diagonal, this will corre-

spond to that there is no electromagnetic field. Owing
to 5D boosts, and bearing in mind that γ04 = 0, and
A0 = γ04/γ44 = 0 we get:

h̃0̃0̃ =
−V h00√

V 2 cosh2 α− V −1h00 sinh
2 α

, (18)

Ã0̃ =

(
V −1h00 − V 2

)
tanhα

V −1h00 tanh
2 α− V 2

, (19)

Ṽ 2 = V 2 cosh2 α− V −1h00 sinh
2 α . (20)
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So we see that after 5D Lorentz transformations, the
metric becomes non-diagonal. In 4D physical space-
time it will correspond the appearance of the electro-
magnetic field. This means that we actually generat-
ing electromagnetic field with its corespondent effec-
tive electric charge. This electric field corresponds to
a global 5D boost, so we call it trivial field, due to the
fact that applying backward 5D boost (by coordinate
transformation x̃ã = Lãbx

b) this field can be removed
(a removable electric charge).
To find the condition under which this electromag-

netic field can be removed, we consider the transforma-
tion of the metric (2)ds2 by the 2D boost xb = Lbãx̃

ã :

γ̃ãb̃
(
x̃k

)
= LaãL

b
b̃
γab

(
xk

)
, (21)

det
(
γ̃ãb̃

)
= det γab = inv . (22)

From this we have:

γ̃0̃0̃ = γ00 cosh
2 α+ γ04 sinh 2α+ γ44 sinh

2 α ,(23)

γ̃0̃4̃ =
1

2
(γ00 + γ44) sinh 2α+ γ04 cosh 2α , (24)

γ̃4̃4̃ = γ00 sinh
2 α+ γ04 sinh 2α+ γ44 cosh

2 α .(25)

The requirement γ̃0̃4̃ = 0 leads us to the needed condi-
tion for 5D metric to be diagonalizable:

γ04
(
xk

)
γ00 (xk) + γ44 (xk)

= −1

2
tanh 2α = const . (26)

In terms of physical quantities, this conditions takes
the form:

V −3h00 −A2
0 − 1

A0
= cothα+ tanhα = const . (27)

While the rest of the metric components will transform
as:

γ̃0̃0̃ =
γ00 cosh

2 α− γ44 sinh
2 α

cosh 2α
, (28)

γ̃4̃4̃ =
γ44 cosh

2 α− γ00 sinh
2 α

cosh 2α
. (29)

Analyzing the conditions that will keep fifth coordinate
space-like (i.e. conserve metric signature) when electric
field is generated, with a consideration of the initial
values γ04 = 0, and A0 = γ04/γ44 = 0, we have:

Ṽ 2 = V 2 cosh2 α− V −1h00 sinh
2 α ≥ 0

v2

c2
= tanh2 α ≤ V 3

h00
=

(γ44)
2

−det γab
=

−γ44
γ00

.

Thus, the allowed global boosts is when the coordinate
velocity not larger than:

v ≤ c

√
−γ44
γ00

. (30)

For asymptotically flat space, we conclude the ex-
pected result of v ≤ c. With higher speeds, horizons
are formed, and the meaning of fifth coordinate does
change.

3. Examples of a removable and unremovable
electric charge

3.1. A removable electric charge

In Chodos and Detweiler (1982) work, they obtained
the following solution:

(5)ds2 = −eµdt2 + 2Ãdtdx+ φ2dx2 +

+eβ
[
dr2 + r2dσ2

]
(31)

= (4)ds2 + φ2 (dx+Adt)
2
,

(4)ds2 = −eνdt2 + eβ
[
dr2 + r2dσ2

]
(32)

A =
Ã

φ2
, eν = eµ +

Ã2

φ2
(33)

where

φ2 = a1ψ
p1 + a2ψ

p2 , ψ =

(
r −B

r +B

)λ/2B
,(34)

eν = eβeµ +
Ã

φ2
=
ψ2

φ2
, (35)

eβ =

(
1− B2

r2

)2
1

ψ2
, (36)

Ã =
√
−a1a2 (ψp1 − ψp2) , (37)

eµ = a2ψ
p1 + a1ψ

p2 , (38)

A =
Ã

φ2
=

√
−a1a2 (ψp1 − ψp2)

a1ψp1 + a2ψp2
, (39)

E ≡ Frte
−ν/2 =

Q

r2φ3
e−β/2 , (40)

p1,2 = 1±
√
1 + κ, κ = 4

(
4B2

λ2
− 1

)
, (41)

Q2 = −a1a2 (1 + κ)
λ2

G
, a1 + a2 = 1 , (42)

where a1, a2, p1, p2, λ, and B– constants.

We rewrite this metric in the form:

(5)ds2 = − (a2ψ
p1 + a1ψ

p2) dt2 +

+2
(√

−a1a2 (ψp1 − ψp2)
)
dtdx+

+(a1ψ
p1 + a2ψ

p2) dx2 + eβ
[
dr2 + r2dσ2

]
or:

(5)ds2 = −ψp2
(√
a1dt+

√
−a2dx

)2
+

+ψp1
(√

−a2dt+
√
a1dx

2
)2

+

eβ
[
dr2 + r2dσ2

]
. (43)

Odessa Astronomical Publications, vol. 28/2 (2015) 123



Now we see that the transformation:

T =
√
a1t+

√
−a2x , (44)

X =
√
−a2t+

√
a1x (45)

will give us the diagonal form of the metric:

−(5)ds2 = ψp2dT 2 − ψp1dX2 − eβ
[
dr2 + r2dσ2

]
, (46)

So we have here an example of the removable electric
field (charge).
In their work, authors claims that this is a general

spherically symmetric solution of KK theory. However,
in a general solution, there should be 4 independent pa-
rameters, more precisely: m– mass, q– electromagnetic
charge, g– scalar charge, v– boost parameter. But here
we have actually only three parameter: m, g, v, more-
over, electromagnetic charge is actually some function
of the rest of parameters, q = q(v,m, g). So for the
obtained electric field is an open question about the
sense of the thus obtained electric field and charge
Frolov et al. (1987) carried out a formal embedding

of the Kerr metric in the flat space M5, and then ap-
plied a boost. By this procedure they obtaining elec-
tromagnetic field, and even the scalar field. Of course,
those are trivial fields, that can be removed by an-
other global boost. Note that those authors reference
to works of Gibbons (1982), Gibbons and Wiltshire
(1985), where this method been developed.
We note also the work Vladimirov and Popov (1982),

which uses a similar method of generating an electric
field.
Apart from the question of the interpretation of

this removable electric field, there are still problems
related to the relationship between the the closure
condition space 5D and 5D boost. In addition to
that, it is appropriate to ask if there are solutions
where electromagnetic field A0 is unremovable by this
procedure, and with an independent charge parameter
q.

3.2. Unremovable Electric Charge

In work Gladush (1980), there is a solution
of spherically-symmetric configuration of interacting
scalar, electromagnetic and gravitational fields of 5D
KK theory, with the following reduced metric and La-
grangian:

Λ = − 1

4π

[
c4

4κ

(4)

R− 1

2
(∇ψ)2 +

+
1

4
FµνF

µνeψ
√
6

]
, (47)

(5)ds2 =
1

2
e−ψ

√
2/3(4)ds2 − e2ψ

√
2/3 (dz + fdt)

2
, (48)

where 4D metric is:

(4)ds2 = eνdt2 − e−ν
[
dr2 +

(
r2 − a2

)
dσ2

]
(49)

while the gravitational potential, scalar field, and elec-
tric field are:

eν = uG
√
3κ/2a

[
A+ 1

2
u−p − A− 1

2
up

]−1/2

,(50)

ψ = −1

4
ln

uG
a

(
A+ 1

2up
− A− 1

2u−p

)√ 3
κ

 (51)

f =
q

2p

1− u2p

A+ 1− (A− 1)u2p
, (52)

u =
r − a

r + a
, p =

√
κ2m2 − κq2

a
, (53)

A =
±κm√

κ2m2 − κq2
, (54)

a2 = κ2m2 − κq2 + κG2 , κ2m2 − κq2 > 0 .(55)

Here, we have three independent parameters
{m, q, G}, and the forth parameter v can be in-
cluded by applying some boost. There is no global
transformation with constant coefficients, that can be
used to remove the electromagnetic field, thus this
field is unremovable.
In the work of Bronikov and Shikin (1977) a similar

problem is solved for a system of interacting scalar,
electromagnetic and gravitational fields, and with an
action similar to above mentioned. But the field was
interpreted not in the context of 5D theory. Also they
used harmonic time gauge for the metric. However if
we analyze it in the context of 5D theory, one finds
that the electric field here as well is unremovable.

4. A symmetrical approach for constructing
new solutions of 5D KK theory

For stationary spaces, in KK theory there is a
method of constructing solutions by using internal
symmetries of KK equations. This method has been
developed in the papers of Maison Kramer and Neuge-
bauer (1969), Maison (1979), Dobiasch and Maison
(1982), Clement (1986), Cvetic and Youm (1995) and
others.
The stationary metric(14) 5D KK theory in 2+3

splitting: be rewritten as:

ds2 = γab
(
xk

)
dxadxb − h̃ij

τ

(
xk

)
dxidxj , (56)

τ = |det ∥γab∥| . (57)

Then the 5D lagrangian for vacuum 5D space of KK
theory is:

L =
√

(5)g
(5)
R ,
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by omitting the divergence, it can be rewritten as La-
grangian for the 4D space

L =
√
h̃

{
(3)R− 1

4

[
γabγcdγac,kγ

,k
bd,l

+ γ2
(
τ−1

)
,k

(
τ−1

)
,l

]
h̃kl

}
. (58)

Furthermore, we introduce a symmetrical unimodular
matrix 3× 3:

χ =

(
γab 0
0 τ−1

)
, (59)

such that detχ = 1 . Then the Lagrangian can be
rewritten as (σ-model):

L =
√
h̃

{
(3)R− 1

4
Sp

(
γ−1γ,kγ

−1γ,k
)}

. (60)

From this we get the following equations:(
χ−1χ,k

)
;k
= 0 , (61)

(3)Rij =
1

4
Sp

(
χ−1χ,iχ

−1χ,j
)
. (62)

This system is invariant under group SL(3, R) trans-
formations of 3D matrices:

χ −→ NχNT , N ∈ SL(3, R) . (63)

To force this metric γab be asymptotically flat space,
we should have at infinity:

χ =

 1
−1

−1

 . (64)

Only the subgroup SO(1, 2) of the group SL(3, R) can
satisfy this property. Now we can generate new so-
lutions by applying some transformation of the group
SO(1,2) to a known solution. For the class of metrics
under our consideration, we only need the transfor-
mations S̃O(1, 2) ⊂ SO(1, 2), which can conserve the
block structure of the matrix χ.
We see that the analyzed Lorentz transformation

L(2) = O(1, 1) is actually a subgroup of S̃O(1, 2)
x̃ã = Lãbx

b. So we have:

O(1, 1) ⊂ S̃O(1, 2) ⊂ SO(1, 2) ⊂ SL(3, R) .

While the transformed matrix χ has the structure:

N =

(
Lãb 0
0 1

)
, (65)

where Lãb are the 2D boosts matrix, that reduces
to the Lorentz coordinate transformations. The set
of solutions that can be obtained by this method
is not very big. The group O(1, 1) that induced by
coordinate transformation can give us solutions only
with trivial electric field. Hence we see the place of
coordinate transformations that generate the trivial
electric fields, among the entire set of transforma-
tions SO(1,2), which in the general case generate a
nontrivial field.
We also see that the physically significant transforma-
tions S̃O(1, 2) – are a map of one KK space (solution)
to another one, that can not be reduced to simple
coordinate transformations.

5. Conclusion

We observed that a phenomenon of generating an
electric field can be interpreted as 5D rotation. In
general, electric field is a result of local 5D rotations
of 5D manifold (i.e. existence of local inertial 5D
reference frames), that defined by additional local
dynamical degrees of freedom. The corresponding
integral of motion gives the conserved charge, as an
independent parameter, This is the case of non trivial
unremovable electrical field (charge).
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ABSTRACT. Path equations of different orbiting
objects in the presence of very strong gravitational
fields are essential to examine the impact of its
gravitational effect on the stability of each system.
Implementing an analogous method, used to examine
the stability of planetary systems by solving the
geodesic deviation equations to obtain a finite value of
the magnitude of its corresponding deviation vectors.
Thus, in order to know whether a system is stable or
not, the solution of corresponding deviation equations
may give an indication about the status of the stability
for orbiting systems.Accordingly, two questions must
be addressed based on the status of stability of stellar
objects orbiting super-massive black holes in the
galactic center.
1. Would the deviation equations play the same
relevant role of orbiting planetary systems for massive
spinning objects such as neutron stars or black holes?
2. What type of field theory which describes such a
strong gravitational field?

Keywords: Stellar systems: Stability – Galaxy:
SgrA* – Strong fields: bi-metric theory – Path and
Path deviation equations: Orbiting particles.

1. Introduction

The problem of stability in our study is centered only
on examining the stability of orbits in a very strong
gravitational fields. In our Galaxy, S-stars are counted
to be good candidates, to explain such a phenomenon.
S-Stars are of spectral class B, that have been traced
near infrared. The characteristic behavior of these
stars as they are very fast orbital motions around the
Galactic Center, with orbital periods more than 16
years, high eccentricities e > 0.2, and their distances
from the Galactic Center is between 100−102mpc (Han,
2014), which is greater than the center’s radius r >> rg
where rg its Schwarzschild radius. Also, a stringent
condition is taken based on m

M < 10−5, where m and
M are masses of stellar object and center of SgrA* re-
spectively (Iorio, 2011). One of most brightest member
of this group is S2, which takes about 16 years to re-

volve about the center of Galaxy with a radial speed
10, 000km/sec and its mass is about 15msun (Meyer et
al., 2012). Recently, another type of stars S0-102 with
lesser brightness and shorter period about 11.5 years.
Unlike, the orbits of satellites, planets or pulsars in the
galactic center the orbital periods are much longer lead-
ing to the relativistic effects increase more steeply with
small radius and very high velocities than classical ef-
fects leading to the involvement of relativity is strongly
appear around the peri-center passage. Accordingly, S-
stars can be counted as clocks in orbit around a black
hole moving on geodesics (Angelil et al., 2014). Any
slight effective perturbation on these trajectories can
be obtained by obtaining its corresponding geodesic
deviation equations.

In general the problem of stability is not only re-
lated to geodesic deviation equations, but to path de-
viation equations of spinning object for a point mass
particle (Mohseni, 2010), which can also be extended
to be charged and spinning charged objects. However,
a slight problem can be emerged which is the solution
of these deviation equations are completely affected by
a coordinate system. Yet, Wanas and Bakry (2008)
developed an approach based on determining a scalar
value of the geodesic deviation capable for detecting
the status of stability of any a certain planetary sys-
tem in the presence of weak gravitational fields (Wanas
& Bakry, 2008).

In the present work, we are going to examine stabil-
ity conditions in the presence of a strong gravitational
field, using Verozub’s version of bi-metric theory of
gravity, which is one of the most appealing theories
(Verozub, 2015).

2. Equations of motion for orbiting objects

It is well known that from observational methods,
to confirm that both planetary and stellar objects are
exhibiting two types of motion revolving and spinning
to become stable in their orbits. From this perspec-
tive, it is important to study stability of these systems
by causing a slight perturbation that affects these com-
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bined motion and checks whether the object remains in
the orbit or lose it forever. Such a technique is required
to solve the path deviation equations of these objects.
Accordingly, it is vital to obtain these equations from
perturbing the original path equation. In case of plan-
ets/stellar objects, several authors have recommended
Mathisson-Papapetrou- Dixon equations (MPD) to be
most reliable set of equation for describing such a sit-
uation (Dixon, 1970).

DPµ

DS
= Fµ, (1)

DSµν

DS
=Mµν , (2)

where Pµ is the momentum vector, Fµ = 1
2R

µ
νρδS

ρδUν ,

Rαβρσ is the Riemann curvature, D
Ds is the covariant

derivative with respect to a parameter S,Sαβ is the spin
tensor, andMµν = PµUν−P νUµ such that Uα = dxα

ds
is the unit tangent vector to the geodesic.
Using the following identity on both equations (1) and
(2)

Aµ;νρ −Aµ;ρν = RµβνρA
β , (3)

such that Aµ is an arbitrary vector. Multiplying both
sides with vectors, Uρ and Ψν as well as using the
following condition (Heydri-Fard et al., 2005)

Uα;ρΨ
ρ = Ψα;ρU

ρ, (4)

and Ψα is its deviation vector associated to the unit
vector tangent Uα. Also in a similar way:

Sαβ;ρ Ψρ = Φαβ;ρ U
ρ,

one obtains the corresponding deviation equations
(Mohseni, 2010)

DΦµ

DS
= Fµ;ρΨ

ρ, (5)

DΦµν

DS
=Mµν

;ρ Φρ (6)

where Φα, Φαβ are the spin path deviation and the spin
tensor deviation associated to a path characterized by
a parameter S and (; ) is the covariant derivative in
Riemannian spaces.
In our study, it is worth mentioning that in case of S-
systems, the orbiting systems are becoming MPD with
Sµν is constant.
Thus,

DUµ

DS
=

1

2m
Fµ, (7)

DSµν

DS
= 0, (8)

with taking into consideration that

SµνUµ = 0.

Accordingly, one transform V α to Uα in the following
way:

V α = Uα + σ
DΨα

Ds

where V α = dx
dS the tangent vector describing the spin-

ning motion, S its associated geodesic parameter and
σ ia an arbitrary parameter acting as a spin angular
momentum ratio (Bini & Gerlalico, 2014).
Thus,

D

DS
V α =

D

Ds
(Uα + σ

DΨα

Ds
)
ds

dS

as well as
Sµν = ŝ(ΨµUν −ΨνUµ),

such that σ = ŝ
m . Thus,

D

DS
V α =

ŝ

m
RµνρσU

ρΨσUβ
ds

dS
,

Let ds
dS = 1, we obtain

D

DS
V α =

ŝ

m
RµνρσU

ρΨσUβ , (9)

the above equation gives an indication that the path
equation of a spinning particle is expressed in terms of
its corresponding geodesic deviation vector.

Such a result can be also extended to study the mo-
tion of binary pulsar, PSR-J0737-3039. It is composed
of two neutrons stars, located at a distance 109km from
the Galactic Center, of negligible intrinsic rotations re-
grading to the orbital period of about 2.4 hours, and
their total mass is about 0.7Msun. This can give that

D

DS
V α1 − D

DS
V α2 =

D

Ds
(Uα + σ1

DΨα

Ds
)
ds

dS

− D

Ds
(Uα + σ2

DΨα

Ds
)
ds

dS
.

where σ1 and σ2 the angular momentum ratio of each
neutron star of this binary pulsar, to obtain the follow-
ing equation

D

DS1
V α1 − D

DS2
V α2 = (σ1 − σ2)R

α
ρδβU

δUρΨβ ,

in which V α1 and V α2 are two tangent vector associated
to each spinning object in the binary system.
Consequently, we find out that

DV̄ α

DS
= (σ1 − σ2)R

α
ρδβU

δUρΨβ (10)

such that, V̄ α = V α1 − V α2 .
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3. The relationship between stability and
geodesic deviation

It is well known that stability of planetary / stellar
systems can be represented by a path deviation equa-
tion for an orbiting object.
Consequently, the stability tensor can be defined as
follows:

Hα
γΨ

γ = RαβωγU
βUω (11)

where Hα
γ is the stability tensor defined as (Di Bari &

Cipriani, 2000).
Thus geodesic deviation equation may be expressed

in terms of stability tensor;

D2Ψα

DS2
= Hα

βΨ
β (12)

which is reduced to

d2Ψµ

dS2
+ 2Γµνρ

dΨν

dS
Uρ + Γµνρ,σU

νUρΨσ = 0, (13)

provided that (Di Bari & Cipriani, 2000)

gµνΨ
µΨν = constant.

Also, equation (9) and (10) can be written in terms of
stability tensor in following way

D

DS
V α = σRµσΨ

σ, (14)

and
DV̄ α

DS
= (σ1 − σ2)H

α
βΨ

β . (15)

Such a result for linearized systems gives rise to in-
dicate that geodesic deviation vector can determine
the spin path equation for S-stars and binary pulsar
that are expressed by MPD equations. In order to ob-
tain the solution, one must solve its corresponding field
equation and define a certain coordinate system, to ob-
tain the value of the deviation vector.
However, Wanas and Bakry (1995) introduced an ap-
proach, for examining the stability problem for any
planetary system, being a covariant coordinate inde-
pendent which can be explained in the following way
(Wanas & Bakry, 1995)).
Let Ψα(S) is obtained from the solutions of the devia-
tion equation in a given interval [a,b] in which Ψα(S)
behave monotonically. These quantities can become
sensors for measuring the stability of the system are

qα
def.
= Ψα(S) = Cαf(S), (16)

where Cα are constants and f(S) is a function known
from the metric. If f(S) → ∞, the system becomes
unstable otherwise it is stable. This approach has
been applied previously in examining the stability of
some cosmological models (Wanas & Bakry, 1995)

using two geometric structures (Wanas, 1986). The
above approach has been modified by obtaining the
scalar value of the deviation vector which gives rise to
become independent of any coordinate system (Wanas
& Bakry, 2008)

q
def.
= lim

s→b

√
ΨαΨα. (17)

If q → ∞ then the system is unstable, otherwise it is
always stable.
Now for spinning objects with precession, we suggest

the above condition be extended to include the spin
deviation tensor Φµν as

q̄
def.
= lim

s→b

√
ΦαβΦαβ . (18)

Thus, for such a member in stellar/planetary system
is stable, if and only if the magnitude of the scalar
value of both spin deviation vectors Φα and spin devi-
ation tensors Φαβ to be real numbers respectively. i.e.
either q → ∞ or q̄ → ∞ the assigned member is un-
stable. Accordingly, a strong stability condition must
be admitted if both q and q̄ are satisfying the following
conditions:

lim
s→∞

(ΦαΦ
α) = 0, (19)

and
lim
s→∞

(ΦαβΦ
αβ) = 0. (20)

4. Geodesic and geodesic deviation: The
Bazanski approach

Geodesic and geodesic deviation equations can be
obtained simultaneously by using the Bazanski La-
grangian (Bazanski, 1989):

L = gαβU
αDΨβ

DS
, (21)

where L is the lagrangian function.
Thus, it can be found clearly, if one takes the variation
with respect to the deviation vector Ψρ to get geodesic
equations:

dUα

dS
+ ΓαµνU

µUν = 0. (22)

Also, the same technique can be applied to get the
variation with respect to the tangent vector Uρ to get
the geodesic deviation equations:

D2Ψα

DS2
= Rα.βγδΨ

γUβUδ. (23)

The above Lagrangian has been modified to describe
the path equation of a charged object to take the fol-
lowing form (Kahil, 2006);

L = gαβU
αDΨβ

DS
+

e

m
FαβU

αΨβ
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where e
m is the ratio of charge to mass of any charged

object, Fµν is an electromagnetic field tensor. Taking
the variation with respect to Ψalpha one obtains

dUα

dS̄
+ ΓαµνU

µUν =
e

m
Fµ.νU

ν . (24)

While taking the variation with respect to Uα one ob-
tains its corresponding deviation equations:

D2Ψα

DS2
= Rα.µνρU

µUνΨρ +
e

m
(Fα.ν

DΨν

Ds
+ Fα.ν;ρU

νΨρ).

(25)
Also the corresponding Papapetrou Equation for ro-

tating objects without precession can be obtained from
the following Lagrangian:

L = gαβU
αDΨβ

DS
+

1

2m
FµΨ

µ (26)

Taking the variation with respect to Ψα, we obtain
the spin path equation,

dUα

dS
+ ΓαµνUµUν =

1

2
Fα (27)

and taking the variation with respect to Uα, we obtain
the spin deviation equation

D2Ψα

DS2
= RαβγδU

βUγΨδ +
1

2
Fα;ρΨ

ρ. (28)

In case of the Dixon equation for spinning charged ob-
jects can be obtained in a similar way from the follow-
ing Lagrangian

L = gαβU
αDΨβ

DS
+

1

2m
(Fµ + eFµνU

ν)Ψµ. (29)

Taking the variation with respect to Ψµ we obtain

dV α

dS
+ ΓαµνU

µUν =
e

m
Fµ.νU

ν +
1

2m
Fµ. (30)

While its corresponding deviation equation can be ob-
tained by taking the variation with respect to Uα

D2Ψα

DS2
= Rα.µνρU

µUνΨρ +
e

m
(Fα.νU

ν);ρΨ
ρ +

1

2
Fα;ρΨ

ρ.

(31)
Similarly, we can modified the Lagrangian (21) to

obtain spin equation and spin deviation equation for
rotating objects with precession in the following way:

L = gαβP
αDΨβ

DS
+ FαΦ

α (32)

where

Pα = mUα + Uβ
DSαβ

DS
.

In order to obtain an equation of spinning object with
precession, we take the variation with respect to the
deviation vector Φα

DPα

DS
= Fα. (33)

And for its spin deviation equation, we take the varia-
tion with respect to Uα to become:

D2Φα

DS2
= Rα.µνρP

µUνΦρ + Fµ;ρΦ
ρ. (34)

While for its precession part it can be obtained using
the following condition:

PµS
µν = 0,

to give
DSαβ

DS
= PµUν − P νUµ.

5. Stability of motion in bimetric theory of
gravity: the Verozub approach

In this section, we are showing that the treatment of
the stability problem in strong fields may be explained
in the presence of bimetric theory of gravity. This type
of bimetric theories was proposed by Rosen in 1940,
who regarded gravity can be expressed in flat space.
Due to considering that, all objects of the Rieman-
naian space are functions in Minkowski space (Rosen,
1973). But such a type of visualization gives no phys-
ical meaning, with inconsistency with observations as
well as there is no relation between the two metrics
(Verozub, 2015). Recently, Verozub has introduced
a new version of bimetric theory of gravity, stemmed
from a well known principle of Poincare that properties
of space-time are relative to the properties of used mea-
suring instruments,together with the Einstein idea of
the relativity of properties of space-time with respect
to the distribution of matter (Verozub, 2008).
It is well known that in general relativity that test

particles in gravitational field move on geodesics in a
Riemanannian space. Accordingly, one may figure out
that the differential equations for obtaining the met-
ric tensor gµν(x) of any distribution of matter must
keep the geodesic equations invariant under coordinate
transformations. Surprisingly, it can be found that
these equations are also invariant under geodesic map-
ping of space time V into V̄ upon replacing Γµαβ → Γ̄µαβ
of the Christoffel symbols in any fixed coordinate sys-
tem to become

Γ̄µαβ = Γµαβ + δµαϕβ + δµβϕα (35)

where ϕµ(x) is a vector field. Moreover, transforma-
tions of the metric tensors are obtained by solving the
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partial differential equation

ḡµν;α = 2ϕα(x)ḡβγ(x) + ϕβ(x)ḡγα(x) + ϕγ(x)ḡαβ(x),
(36)

in which the semi-colon is related here to the covariant
derivative of V .
Thus, this field can be expressed in a Riemannian

space in terms of two metrics before and after the
geodesic mapping of from one space time into another
in the following way:

ϕα =
1

n+ 1
(Γ̄µαµ − Γµαµ) =

1

2(n+ 1)

∂

∂xα
ln| ḡ

g
|. (37)

Thus, Verozub’s version of bimetric theory of grav-
ity has two important results, geodesic transformations
are playing the role of gauge transformations while co-
ordinates transformation are acting the same way as
in electrodynamics. It also gives a full description of
motion of small particles of a perfect isentropic fluid
able to describe gravity in strong gradational fields of
a super-massive black hole Sgr A* at the Galactic Cen-
ter. Also, the theory has neither singularities nor event
horizon.
From this perspective, we aim to study stability of

orbiting objects like S2 and binary pulsar PSR-J0737-
3039, by obtaining their geodesic and geodesic devia-
tions vectors.
Implementing Verzob’s version one can find that the
trajectories of a test particles are geodesics are in
the co-moving reference frame, (CRF), described by
gµν(ψ), such that ψµν is a tensor field of spin 2 gravity,
as found in Riemananain space of non zero curvature.
While, the same test particle is observed in an inertial
reference frame (IRF) as a point mass moves under the
influence of a force field ψµν , as existed in Minkwoskian
space (Verozub 2008).
Accordingly, the line element of the IRF is defined

as follows:
dσ2 = ηµν(x)dx

µdxν , (38)

where ηµν is the Minkowski metric and its correspond-
ing CRF line element is defined as

dS2 = gµν(ψ)dx
µdxν (39)

leading to define its corresponding affine connection:

Γ̄αβρ =
1

2
gαδ(ψ)(gβδ,ρ + gδρ,β − gβρ,δ).

Applying the Bazanski approach, we obtain geodesic
and geodesic deviation equations of Verozub’s version
for bimetric theory of gravity:

L(ψ) = gαβ(ψ)U
αDΨβ

DS
(40)

This can be seen clearly if one takes the variation with
respect to the deviation vector Ψρ to get the geodesic
equations:

dUα

dS
+ Γ̄αµν(ψ)U

µUν = 0 (41)

Also, the same technique can be applied to get the
variation with respect to the tangent vector Uρ to get
the geodesic deviation equations:

D2Ψα

DS2
= R̄α.βγδ(Ψ)ΨγUβUδ (42)

where R̄ is the Riemann Curvature described by the
affine connection Γ̄αβ.ρσ for the (CRF). Thus the stabil-
ity equation in this case becomes:

D2Ψα

DS2
= Ĥα

.γ(ψ)Ψ
γ . (43)

as Ĥα
.β is the stability tensor defined in CRF. Thus,

the deviation vector in CRF in Riemannian space can
be expressed as a separation vector of these particles
under the action of a force field ψµν in Minkowkian
space, which can be reduced to (Verozub, 2015):

∂2ηα

∂2τ
+

∂2U

∂xα∂xβ
ηβ = 0, (44)

where ηα = ∂xα

∂ξ , xµ = xµ(τ, ξ) such that ηα is the
separation vector and U is the gravitational potential
as measured in the flat space. If we apply the Wanas-
Bakry condition on the scalar of the separation vector
between two geodesics in a Minkowski space we can
easily find

q̃ = lim
τ→b̄

√
ηαηα

, where the solutions of η(τ) in a given interval [ā, b̄]
behave monotonically. If q̃ → ∞ then the system is
unstable, otherwise it is always stable. Consequently,
the strong stability condition becomes

lim
τ→∞

(ηαη
α) = 0. (45)

Accordingly, we can conclude that in a strong grav-
itational field, in covariant stability condition is
examined by obtaining the scalar value of its associ-
ated separation vectors as defined in IRF rather than
its equations. Such an approach gives the finiteness of
the scalar value for the separation vector an indicator
to decide whether the orbiting system is stable or not.

6. Discussion and concluding remarks

In this study,we have examined the stability of rotat-
ing objects in the presence of very strong gravitational
field. One of most promising theories is the bimetric
version of Verozub. The objects are considered as test
particles due to to the stringent condition m

M < 10−5,
e.g the S-stars are considered as test particles moving
on geodesics and acting as clocks for the SgrA*. It has
been assumed that the stability criterion may be es-
timated its status by extending the covariant stability
condition method of Wanas-Bakry to examine S-stars
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and PSR J0737-3039. The stability of these systems
are mainly dependent on obtaining the corresponding
deviation vectors and then finding their scalar value in
each case. Yet, an additive step may be obtained due
to Verozub’s bimetric theory, is the scalar part of the
separation vectors obtained in IRF as defined in flat
space is becoming a good candidate to examine the
stability condition.
Moreover, we have obtained a relationship be-

tween the spin tensor of a rotating object with its
corresponding deviation vector. This result leads to
identify the stability condition without finding out
the spin deviation vector as an indicator of stability
conditions, and examining only the stability condition
on their corresponding deviation vector. Accordingly,
we have obtained a quick method to estimate whether
the system is stable or not without going to lengthy
calculation to determine the scalar value for the spin
deviation vector, such an advantage works in favor
of testing stability conditions for S-stars or binary
pulsars orbiting SgrA*.
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ABSTRACT. We will use Geroch-Held-Penrose
formalism for decoupling of quantity dΨ4, which is
responsible for tensorial perturbations, in Bianchi
equations. We will concentrate on the case, where we
eliminate the source terms.
Keywords: Friedman-Lemaitre-Robertson-Walker
spacetime, Geroch-Held-Penrose formalism, Newman-
Penrose formalism, Weyl scalars

1. Introduction

Our goal is to use the Geroch-Held-Penrose
formalism (GHP - formalism) in reformulation of per-
turbations of Friedman-Lemaitre-Robertson-Walker
spacetime (FLRW ST). GHP - formalism (a more
compact version of NP - formalism) is a convenient
formalism, because it allows us to work with partial
differential equations of the first order. The scalar and
tensor perturbations are for us the most interesting
because of the origin of structure. I will show, how
to apply the GHP-formalism for decoupling of the
quantity dψ4 in Bianchi equation. These calculations
are done for the case of the simplified right-hand side
(RHS without sources).

2. NP-formalism

NP- and GHP-formalisms are mathematical ap-
proaches which help us, for example, in perturbation
theory to simplify calculations in standard General Rel-
ativity. We decompose the metric with respect to the
null tetrad and then we project all quantities on this
tetrad (in the NP-formalism). The basic quantities are
spin-coefficients - projections of the derivatives of the
null tetrad, then projections of the Ricci tensor and al-
ready mentioned Weyl scalars. We could then rewrite
the Einstein’s equations by the 18 Ricci, 8+3 Bianchi
and 4 commutation equations, which are only first or-
der PDE’s, when we define new derivatives in the di-
rection of the tetrad (D,∆, δ, δ). Let us to introduce,

Table 1: Spin coefficients
α = 1

2 (S214 + S344) ν = S242 τ = S312

β = 1
2 (S213 + S343) κ = S311 σ = S313

γ = 1
2 (S212 + S342) π = S241 µ = S243

ε = 1
2 (S211 + S341) ρ = S314 λ = S244

for illustration, the basic quantities and equations now:
we will denote the 12 spin coefficients by Sijk (stan-

dard notation is with γ), where the three indices mean,
which element of the tetrad we are using (where the
null tetrad is defined in standard way), Table 1.

For example:

ρ = mµlµ;νm
ν

Projections of the Ricci tensor (we will omit the
brackets by tetrad indices in this part of thesis):

Φ(i)(j), i, j = 0, 1, 2, 3,

Φ(0)(0) = −1

2
Rµν l

µlν

So, let’s define the projections of the Ricci tensor by
the following notation, [1]:

Φ00 = −1

2
R11,Φ01 = −1

2
R13,Φ10 = −1

2
R14,

Φ12 = −1

2
R23,Φ21 = −1

2
R24,Φ22 = −1

2
R22,

Φ11 = −1

4
(R12 +R34),Λ =

1

12
(R12 −R34),

Φ02 = −1

2
R33,Φ20 = −1

2
R44. (1)

Weyl scalars (5 in dimension 4):

Ψi, i = 0, 1, 2, 3, 4 (2)
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Ψ0 = lµmν lρmσCµνρσ,

Ψ1 = lµnν lρmσCµνρσ,

Ψ2 = lµmνmρnσCµνρσ,

Ψ3 = nµlνnρmσCµνρσ,

Ψ4 = nµmνnρmσCµνρσ. (3)

Now we present one Ricci, one Bianchi and one com-
mutation relation:

Ricci identities (18 equations)

Dρ−δ∗κ−ρ2−σσ−ρε−ρε+κτ+(3α+β−π)κ = Φ00,
(4)

Bianchi identities (11 equations)

− δ∗Ψ0 +DΨ1 + (4α− π)Ψ0 − 2(2ρ+ ε)Ψ1 =

δΦ00 − 3κΨ2 −DΦ01 + 2(ε+ ρ)Φ01 − κΦ02+

+ (π − 2α− 2β)Φ00 + 2σΦ10 − 2κΦ11, (5)

Commutation relations (4 equations):

∆D−D∆ = (γ+γ)D+(ε+ε)∆−(τ+π)δ−(τ+π)δ. (6)

We can rotate the tetrad and we can get a transfor-
mation property of these quantities. However, there ex-
ists also a more compact version of the NP-formalism,
so called GHP-formalism. One makes the following re-
definitions of the derivative operators:

þ = D − pε− qε, (7)

þ
′

= ∆− pγ − qγ, (8)

ð = δ − pβ − qα, (9)

ð
′

= δ − pβ − qα. (10)

We have 4 different operators and two, so called,
dualities in dimension 4 (star - duality, (p, q)→ (p,−q),
is for exchange of the vector l andm, the prime duality,

Table 2: Relations among projections of Ricci tensor
Φ′00 = Φ22 Φ′11 = Φ11 Φ′10 = Φ12 Φ′02 = Φ20

Φ′00 = Φ02 Φ′01 = −Φ01 Φ∗10 = Φ12 Φ∗11 = −Φ11

Φ∗22 = Φ20 Φ∗12 = Φ10 Φ∗02 = Φ00 Φ∗20 = −Φ22

Λ′ = Λ Φ∗21 = −Φ21 Λ∗ = −Λ

Table 3: GHP-type
Φ00 : (2, 2) Φ01 : (2, 0) Φ10 : (0, 2)
Φ11 : (0, 0) Φ22 : (−2,−2) Φ12 : (0,−2)
Φ21 : (−2, 0) Φ20 : (−2, 2) Φ02 : (2,−2)
Λ : (0, 0)

(p, q) → (−p,−q), for the exchange of the l and n; we
could not use both dualities in HD, because we have
odd dimensions)

Ση, Σ =
{

þ, þ
′
,ð,ð

′
}
, (11)

where Σ is an operator acting on a quantity η.
But we need the notion of the GHP scalars when we

make the following transformations:

lν → λ−1lν , (12)

nµ → λnµ, (13)

mρ 7→ eiθmρ. (14)

We say that a quantity η is a GHP-scalar of type
(p, q), if it transforms like (analogical definition for

the case of higher dimensions is in [2]):

η → λ(p+q)/2ei(p−q)θ/2η. (15)

We will use the star and prime duality in a standard
way, [1]. We see the relations among perturbations of
Ricci tensor in Table 2.

And the types for these quantities are in Table 3.

3.Computations

Now we will apply the GHP-formalism in perturba-
tion theory of FLRW ST. It will be done, of course,
in classical manner. However, we obtain a new result
with this formalism.

Reference [3] will be of great importance for us,
where the following fact can be found: the only non-
vanishing spin coefficients for the case of FLRW are α,
β, γ, µ and ρ. These are the same non-zero spin co-
efficients as for the case of the Schwarzschild solution.
This fact can be employed in the analysis of unper-
turbed equations. This means that we can get rid of
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many terms in the resulting equations. We get rid of
α, β, γ and ε because they are absorbed into þ and
ð (þ

′
and ð′

). Together there are 12 spin coefficients,
thus there remain yet 8 more: τ , σ, κ, µ, ρ, λ, π and
ν ;

The course of action will be now the following. We
will write the general Bianchi equations for the case of
FLRW ST with sources. We will show our result for
the special case of simplified right-hand side.

We have the following 2 equations in GHP formalism
for the case of FLRW ST. We have 8 equations in stan-
dard NP-formalism, but this formalism is even more
efficient. (We stress once again that we have sources
on the right hand side of the equations contrary to the
Schwarzschild ST.) The equations read

þΨ1 − ð′Ψ0 + τ ′Ψ0 − 4ρΨ1 + 3κΨ2 = þΦ01 − ðΦ00−
−πΦ00 − 2ρΦ01 + κΦ02 + 2κΦ11 − 2σΦ10,

(16)

þΨ2 − ð′Ψ1 − σ′Ψ0 + 2τ ′Ψ1 − 3ρΨ2 + 2κΨ3 =

þ′Φ00 − ð′Φ01 − ρ′Φ00 + 2τΦ01 − 2ρΦ11−
−σΦ∗00 + 2τΦ10 + 2þΛ, (17)

where we defined the NP components of the Weyl ten-
sor in the standard way.

The Ψ0 and Ψ4 are connected with the tensor per-
turbations, Ψ1 and Ψ3 are connected with the vector
perturbations and Ψ2 is connected with the scalar per-
turbations according to the [3] 1. 2

Now we will follow the approach presented in [4].
The difference, as we already mentioned, is that we
have sources on the RHS. However, we can make the
same steps: we will take the first equation and we will
apply operator ð, we make the star duality and we add
the first and this modified equation. Then we plug
from the Ricci identities, we eliminate some of these
combinations of spin coefficients (we make also prime
and star dualities of these Ricci identities ) and we
arrive at the following result (the second equation could
be obtained in a similar way).

1 We can use their boost weights like an argument.
2In the case of non-zero sources we have also other two equa-

tions:

− [þ′ − 2τ∗ + π∗]Φ01 + [−þ − 2τ∗ + π∗]Φ12+

[ð− 2(ρ∗ + ρ∗]Φ11 − [−ð′ + µ∗ + µ∗]Φ02+

σ∗Φ∗02 + σ∗Φ∗20 − κ∗Φ∗12 − κ∗Φ∗21 + 3ðΛ = 0, (18)

[ð− 2τ + 2π∗]Φ11 − 3ðΛ + [−þ + 2ρ+ ρ]Φ12+

[−þ′ − 2µ− µ]Φ01 + [ð′ − τ∗ + π]Φ02

− κΦ22 + νΦ00 + σΦ21 − λΦ10 = 0. (19)

[þ′þ− ð′ð− (4ρ′ + ρ′) þ− ρþ′ + (4τ ′ + τ)ð+

τð′ + 4ρρ′ − 4ττ ′ − 2Ψ2 + 2Λ]Ψ4+

[4þκ′ − 4ðσ′ − 4 (ρ− 2ρ)κ′+

4 (τ − 2τ)σ′ + 10Ψ3]Ψ3+[
−4σ′þ′ + 4κ′ð′ − 12κ′τ ′ + 12ρ′σ′ − 3Ψ0

]
Ψ2 = 0.

(20)

This equation contains information from both (16)
and (17). It is interesting that for this case of FLRW
spacetimes, we have cancellations of all extra terms in
front of Ψ2 and Ψ3. The terms in the brackets in front
of Ψ2 and Ψ3 are exactly the same (except of one term
3Ψ0Ψ2) as for the case of the Schwarzschild spacetime.
This means that when we will make perturbations of
these equations, the second and third term disappear.
So, we obtain a decoupling of the quantity dΨ4.

This is other new information, when we compare it
with [3]. Here we were interested in equations without
sources, i.e. when we put just delta-function on the
RHS. But in later work we could be interested in
the same problem but with sources, as was already
suggested in this article. It is an advantage to write
all sources in one compact form.

4. Conclusion

I have been studying perturbation theory of FLRW
ST in GHP formalism. We obtained a new interesting
observation, which could be used for other research in
the realm of Cosmological Perturbation Theory.
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ABSTRACT. We discuss the possibility of using
the Cluster Cartography set for the determined the
morphological types of galaxy clusters. The applied
morphological scheme was proposed by Panko (2013).
The morphological types are determined using numer-
ical criteria based on three parameters: concentration
to the cluster center, the signs of preferential direction
or plane in the cluster (filamentary substructure),
and the positions of the brightest galaxies. However,
structures like galaxy clusters need visual preview for
classification. The Cluster Cartography set constructs
the individual cluster map in different forms and
allows to estimate previously cluster type.
Keywords: Galaxies: clusters: morphological types.

1. Introduction

The morphology of galaxy clusters reflects the phys-
ical conditions in the cluster space. One can note
the galaxy clusters have a special place in hierarchy
of large-scale structures. They are the part of a con-
tinuous range of large-scale construction of Universe:
galaxies ⇒ groups ⇒ clusters ⇒ superclusters ⇒ cos-
mological large scale structure. Galaxy cluster virial-
ization time is about 109 yr, and it is less then Hub-
ble time. In contrary, galaxy superclusters virialization
time – about 1010.5 – is bigger then Hubble time. As a
result the galaxy clusters are not biggest bound struc-
tures in the Universe, they are only biggest virialized
ones. The galaxy clusters are small in comparison to
Universe. At the same time, on the galaxy clusters
scale, their components have not had a chance to sep-
arate during collapse and a cluster is probably a rep-
resentative sample of the Universe. In particulary, the
part of dark matter (DM) in galaxy clusters must be
the same, as in whole Universe. The determination of
morphological types of galaxy clusters will be useful for
detailed study of the large scale structures.

Panko (2013) summarized the classical schemes, in-
cluding both famous Bautz – Morgan (1970), Rood
– Sastry (1971) systems and less popular López-Cruz

at al. (1997) and López-Cruz & Gaztanaga (2001)
ones. Improved and integrated scheme (Panko 2013)
allows to assign the morphological types correspond-
ing to cluster “concentration” (from C – compact, to
I – intermediate, and O – open), “flatness signs” (L –
line or F – flat, and no symbol if no indication of flat-
ness is present) and the role of bright galaxies (cD or
BG, if the bright cluster members role is significant).
Other peculiarities are noted as P. “Flatness signs” can
correspond to filamentary substructure or preferential
plane in cluster. The designations can be combined, for
example CFcD or ILP. Unfortunately, like to morphol-
ogy of galaxies case, programmatic way does not allow
to distinguish morphology without visual preview and
control.

We create the Cluster Cartography set (hereafter
CC) for simplification of the galaxy clusters classifica-
tion.

2. Observational Data

The CC set was create for morphology classification
of galaxy clusters of the “A Catalogue of Galaxy
Clusters and Groups” (Panko & Flin, 2006, hereafter
PF). The PF Catalogue was constructed on Münster
Red Sky Survey Galaxy Catalogue (Ungrue et al.,
2003, hereafter MRSS) as the observational basis.
Each PF galaxy cluster has the list of galaxies in
the cluster field inclusive for each galaxy informa-
tion accordingly to MRSS, specifically RA2000 and
Dec2000, rF magnitude, major and minor axes and
positional angle of major axis of galaxy best-fitted
ellipse (Ungrue et al., 2003).

2. The Cluster Cartography set

The cluster map is constructed in rectangular coor-
dinates recalculated into arcseconds. The equatorial
coordinates were recalculated to rectangular ones cen-
tered in the cluster center by usual way. The CC set
allows to construct the cluster map in four modes:
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Figure 1: The modes of cluster mapping. All maps constructed for the same I -type cluster PF 0206-4119.

– all symbols are circles and have the same size;
– all symbols are circles and the symbol size corre-

sponds to magnitude of galaxy (Fig. 1a and b);
– the symbol size corresponds to magnitude of galaxy

and each symbol illustrates the galaxy shape and
orientation in the projection on the celestial sphere
(Fig. 1c);

– the symbols illustrates the galaxy shape and orien-
tation in the projection on the celestial sphere, but size
of symbol corresponds to galaxy size in arcseconds.

Additionally brightest galaxies can be marked by
darker gray shades (Fig. 1b and c).

The shown in Fig.1b CC mode allows to estimate the
morphological type according to Panko (2013) and the
select the clusters for numerical definition. The ana-
lyze of distribution of ellipticities of galaxies in the clus-
ter notes to one more parameter in classification – the
part of E-type galaxies (Panko & Flin, 2014). E-rich
and S-rich galaxy clusters were recognized by Oemler
in 1974. The galaxy shape and orientation mode was
added for previous estimation of positions of E-type
galaxies in the cluster field. In our data set (accord-
ingly to MRSS) we can divide galaxies only to elliptical
and non-elliptical. Galaxies with ellipticity E > 0.5
can be lenticular or spiral (near edge-on view) or in-
teractive ones. Positions of these galaxies in E-poor
clusters is important in connection with Morphology –
Density relation (Dressler, 1980).

The diameter of circle symbol m′ was calculated us-
ing galaxy magnitude m as:

m′ = 3 · 20.6(18.5−m) + 6 (1)

The coefficients can be changed in case of need, but
for typical map size – 4000× 4000 arcsec – the symbol
sizes calculated according to (1) are optimal.

The sizes of major and minor axes (2a and 2b) for
shown in Fig. 1c CC mode are calculated from m′ and

ellipticity E as:

2a =
m′

4
√

1− 2E + E2
; 2b =

(m′)2

2a
(2)

Note, the ellipticity E = 1 − b
a . The equations (2)

transform the circle to ellipse with the same area
and connect symbol axes with galaxy magnitude.
We use MRSS data for maps shown real galaxy size
with magnitudes noted as shades of gray in CC mode 4.

2. Conclusion

We tested the CC set in different modes on 247
rich PF galaxy clusters. It allows to estimate galaxy
cluster morphological type quickly. We will use the
CC set in future work for study of 1746 PF galaxy
clusters with richness 50 and more. About of 1200
galaxy clusters in this list have no morphological types
and using the CC set allows to improve our data set.
Acknowledgements. This research has made use of
NASA’s Astrophysics Data System.
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ABSTRACT. We study the possible types of future
singularities in the isotropic homogeneous cosmologi-
cal models for the arbitrary equation of state of the
contents of the Universe. We obtain all known types
of these singularities as well as two new types using a
simple approach. No additional singularity types are
possible. We name the new singularities type “Big
Squeeze” and “Little Freeze”. The “Big Squeeze” is
possible only in the flat Universe after a finite time
interval. The density of the matter and dark energy
tends to zero and its pressure to minus infinity. This
requires the dark energy with a specific equation of
state that has the same asymptotical behaviour at low
densities as the generalised Chaplygin gas. The “Little
Freeze” involves an eternal expansion of the Universe.
Some solutions can mimic the ΛCDM model.

Keywords: Relativistic cosmology

1. Introduction

During almost a century, cosmologists considered
only two possible scenarios of the future of our Uni-
verse – an eternal expansion of open or flat Universe
or future recollapse of the closed Universe with the “Big
Crunch”. Nowadays we know that the Universe con-
tains not only several types of matter, including the
dark matter, baryonic matter and massless particles,
but also the mysterious dark energy (DE). We know
about its existence only for the last few decades. Hon-
estly, we know very little about DE properties, in par-
ticular about the DE equation of state.
Even for the simplest type of the DE equation of

state
p = wρ (1)

with w = const, where p is the pressure and ρ is the
mass density, the Universe can meet its end in abso-
lutely different way. If w < −1 we deal with so-called
phantom energy. In this case during the finite time pe-
riod the matter and energy density, the Hubble param-
eter H and the scale factor of the Universe a increase
to infinity. Such type of possible future singularity was

discovered by Caldwell, Kamionkowski and Weinberg
(2003) and called “Big Rip”.
Note that the latest estimations of the w value do

not reject this possibility. The data on the cosmic
microwave background spectra from the Planck and
WMAP satellites together with ground measurements
and data from baryonic acoustic oscillations (BAO)
provide the estimation w = −1.13+0.23

−0.25 at 95% con-
fidence level (CL). The 9-year data from the WMAP
satellite plus the determination of the Hubble constant
and BAO data provide estimations w = −1.073+0.090

−0.089

for the flat Universe and w = −1.19 ± 0.12 for the
non-flat Universe at 68% CL. Adding 472 type Ia
supernovae data improves these estimations to w =
−1.084± 0.063 and w = −1.122+0.068

−0.067, respectively.
Thus, the possibility of the “Big Rip” sealing the fate

of the Universe is not to be taken lightly. This is not
the only theoretically possible type of cosmological sin-
gularity except “Big Bang” and “Big Crunch”. Their
first classification was carried out by Nojiri, Odintsov
and Tsujikawa (2005). Four possible types were found
for the singularities at t = t0 with finite t0. They in-
clude:

• Type I a, ρ, |p| → ∞ (“Big Rip”)

• Type II a→ a0; ρ→ ρ0; |p| → ∞ (“sudden”)

• Type III a → a0; ρ, |p| → ∞ (it was named “Big
Freeze” lately)

• Type IV a → a0; ρ, |p| → 0 and higher derivatives
of the Hubble parameter H diverge.

There are some singularities with t0 = ∞, too.
The “Little Rip” singularity (Frampton, Ludwick and
Scherrer, 2012) similar to the “Big Rip”, but with eter-
nal expansion is among them.
Some types of singularities were found and demon-

strated for some specific equations of state. Cosmol-
ogists considered the particular cases of the phantom
generalised Chaplygin gas equation of state, tachyon
field, scalar fields with specific potentials, etc. Natu-
rally, a question arose, whether all the possible singu-
larity types have been considered.
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In this article we try to give an exhaustive answer
to this question for the isotropic and homogeneous
Universe. To make it worse, in addition to unknown
DE equation of state we have three possible signs of
space curvature. We are interesting in the complete
list of the possible types of future singularities for an
arbitrary equation of state for three signs of space
curvature. We consider an arbitrary equation of
state p(ρ) without any constrains except ρ ≥ 0. In
particular we do not use the strong energy condition
ρ+ 3p > 0.

2. The search for future singularities in
FLRW Universe

We consider the homogeneous isotropic Uni-
verse with the Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric

ds2 = dt2 − a(t)2
[
dχ2 + F 2(χ)dO2

]
, (2)

where a(t) is the scale factor, dO2 = dΘ2+cos2(Θ)dφ2

is the distance element on a unit sphere, F (χ) = sin(χ)
and k = 1 for the closed Universe, F (χ) = sinh(χ) and
k = −1 for the open one, and F (χ) = χ and k = 0 for
the spatially flat models. We use the system of units
in which G = 1 and c = 1. This Universe is filled by all
kinds of matter and dark energy with a mass density ρ
and an effective pressure p(ρ). In this system of units
the energy density ε coincides with ρ. The Einstein
equations for the metric (2) reduce to the well-known
Friedmann equations. We need the expression for the
Hubble parameter H = a−1da/dt

H2 =
8π

3
ρ− k

a2
(3)

and the hydrodynamical equation or the energy con-
servation equation

dρ

dt
= −3(ρ+ p)H. (4)

The Friedmann equation for the scale factor

d2a

dt2
= −4π

3
a(ρ+ 3p) (5)

follows from the equations (3) and (4).

2.1. Flat model

We start from the flat model with k = 0. The equa-
tion (3) provides the expression H = (8πρ/3)1/2. Af-
ter substituting it into (4) we obtain a simple equation
with the solution

∆t = t0 − t1 = − 1

2(6π)1/2

∫ ρ0

ρ1

dρ

ρ1/2 (ρ+ p(ρ))
. (6)

Here the subscript 1 corresponds to the initial param-
eters (i.e. t1 is “now”) and the subscript 0 corresponds
to the parameters of the Universe in the future at time
t0 after a time interval ∆t. We will denote the instant
of time of any terminal cosmological singularity as t0,
and use (6) to analyse their properties. After find-
ing the dependence ∆t(ρ) we find the inverse function
ρ(∆t) and H(∆t), the integration of the last one gives
ln(a).
The first thing to check is the finiteness of ∆t. If the

integral in (6) diverges we obtain t0 = ∞ and this case
deals with the asymptotic evolution in the future. An
example of such solution is the “Little Rip”.
We are going to go over all possible types of singu-

larity. We consider three possible cases for ρ0. It can
be infinite, finite and nonzero, or equal to zero. Let us
consider it one by one.

2.1.1 Infinite terminal density

Let us start with a well-known “Big Rip” singularity
to illustrate our approach. We consider the equation
of state (1). If w = −1 we deal with the effective cos-
mological constant. According to (4) in this case the
density and the pressure are constant. If w > −1 the
values of ρ and H decrease in time because of (4). If
w < −1 the values of ρ and H increase due to (4) and
become infinite at time t0. Equation (6) gives us in
this case the relations

ρ1 =
1

6π(1 + w)2∆t2
, H =

2

3|1 + w|∆t
. (7)

This is the so-called “Big Rip” case. The scale factor

of the Universe diverges a ∝ ∆t−
2

3|1+w| .
A somewhat similar case is when w is not constant,

but asymptotically tends to −1: ρ/p −−−→
ρ→∞

−1. Let us

assume that it follows the power law

ρ+ p −−−→
ρ→∞

−Aρα (8)

with α < 1, A = const. The integral in (6) is finite
at 1/2 < α < 1. In this case we have the “Big Rip”
withH ∝ ∆t1/(1−2α), ln a ∝ ∆t2(1−α)/(1−2α). It occurs
later and has a sharper shape for the same initial value
ρ1 in comparison with the equation of state (1).
If α < 1/2 the integral in (6) becomes divergent and

we have to put t0 = ∞. This is the so-called “Little
Rip” introduced in (Frampton, Ludwick and Scherrer,
2012). In this case we rewrite (6) in the form

∆t = t− t1 = − 1

2(6π)1/2

∫ ρ(t)

ρ1

dρ

ρ1/2 (ρ+ p(ρ))
. (9)

This case corresponds to an eternally accelerating ex-
pansion of the Universe: H ∝ t1/(1−2α), ln a ∝
t2(1−α)/(1−2α).
In the intermediate case α = 1/2 we must take into

account a possible logarithmic divergence and consider
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the equation of state with the asymptote ρ + p −−−→
ρ→∞

−Aρ1/2(ln ρ)β . At β > 1 we deal with the uncon-
ventional “Big Rip” with ln ρ ∝ ∆t1/(1−β), at β < 1
we deal with the “Little Rip” with ln ρ ∝ t1/(1−β).
At β = 1 we consider the equation of state with the
asymptotic ρ + p −−−→

ρ→∞
−Aρ1/2(ln ρ)(ln ln ρ)γ . There

is the “Big Rip” with ln ln ρ ∝ ∆t1/(1−γ) at γ < 1 and
the “Little Rip” with ln ln ρ ∝ t1/(1−γ) at γ > 1.

So far we considered cases with a −−−→
ρ→∞

∞, but

this is not required. For example, a type III singu-
larity has finite t0 and a0 values, but ρ,H, |p| −−−→

t→t0
∞.

Let us consider this type of singularity. From H =
a−1da/dt −−−→

t→t0
∞ and a(t) −−−→

t→t0
a0 we see that a(t)

is regular, but da/dt diverges at t = t0. This is possible
if the scale factor has a power-law asymptote

a(t) −−−→
t→t0

a0 −B(t0 − t)λ (10)

with 0 < λ < 1. This yilds H −−−→
t→t0

λB(t0 − t)λ−1/a0.

From (3) we obtain for this case ρ(t) ∝ (t0 − t)2(λ−1).
After substituting these expressions in (4) we get ρ(t)+
p(t) ∝ (t0− t)λ−2. This corresponds to the equation of
state (8) with α = 2−λ

2−2λ , λ = 2α−2
2α−1 . In this case α > 1

and |p| ∝ ρα ≫ ρ in the vicinity of the singularity.

Let us consider this type of singularity directly from
(6). If ρ −−−→

t→t0
∞ but ρ/p −−−→

ρ→∞
0, e.g. p(ρ) −−−→

ρ→∞
−Aρα with α > 1, A = const we also have a singularity
with H ∝ ∆t1/(1−2α), ln a ∝ ∆t2(1−α)/(1−2α) = ∆tλ.
Note that at α < 1 we get the “Big Rip” case consid-
ered above. But in the case of the “Big Freeze” singu-
larity the scale factor tends to some constant value.

If we deal with the power law (10) for the scale factor
with some noninteger λ > 1 we have no “Big Freeze”
singularity, but some higher derivatives of H diverge.
If 1 < λ < 2 both parts of the Friedmann equation
(5) diverge, if λ > 2 both of them tend to zero. This
case corresponds to ρ −−−→

t→t0
0, |p| −−−→

t→t0
∞ and we will

consider it later.

Is a version of the “Big Freeze” with t0 = ∞ pos-
sible? It could be named the “Little Freeze” simi-
larly to the situation with the “Big Rip” and the “Lit-
tle Rip”. In this case instead of (10) we consider an
asymptotic behaviour of the scale factor in the form
a(t) −−−→

t→∞
a0 − Btλ with λ < 0. According to (3)

and (4) we have in this case ρ(t) ∝ t2λ−2 −−−→
t→∞

0 and

p(t) ∝ tλ−2 −−−→
t→∞

0. This possibility will be consid-

ered later, too.

2.1.2 Finite terminal density

Let us consider singularities with a nonsingular
ρ −−−→

t→t0
ρ0 ̸= 0. In this case all nontrivial solutions

require p + ρ factor to diverge or vanish according to

(6). In the first case |p| → ∞, the second one corre-
sponds to the crossing the line ρ+p = 0. It corresponds
to the equation of state of the cosmological constant,
separating the phantom energy domain with an effec-
tive w < −1 from the domain of not so exotic matter
w > −1. We will see that the possibility of such cross-
ing depends on the parameters of the equation of state.
We start with considering solutions with finite t0.

Both cases could be described by a single power-law
asymptote of the equation of state

ρ+ p(ρ) −−−→
ρ→ρ0

C(ρ− ρ0)
µ (11)

with C = const.
At µ < 0 the modulus of the pressure tends to in-

finity, at µ > 0 the ρ + p reaches zero. The finiteness
of t0 is possible only at µ < 1. In this case we have
ρ(t) − ρ0 ∝ ∆t1/(1−µ), ρ(t) + p(t) ∝ ∆tµ/(1−µ). The
singularity with µ < 0 and |p| −−−→

ρ→ρ0
∞ is referred to

as the type II or sudden singularity. The value of H
tends to finite H0, so the scale factor linearly increases.
The achievement of ρ+p = 0 condition in finite time

is possible if 0 < µ < 1. Thus, the Universe can change
the type of its equation of state from phantom energy
to a more ordinary one, but only for such kind of the
asymptote of the equation of state.
At µ > 1 we obtain t0 = ∞, i.e. the asymptotic

approximation of ρ + p = 0 condition. The evolution
of such a Universe at the terminal stage practically co-
incides with the evolution of the flat Universe with a
cosmological constant and without any other types of
matter. There is no spacetime singularity in this case.
Using the approximation (11) we obtain the asymp-
totes ρ(t)− ρ0 ∝ t1/(1−µ), ρ(t)+ p(t) ∝ tµ/(1−µ) → 0 at
t→ ∞. This solution can mimic the ΛCDM model.

2.1.3 Zero terminal density

This last possibility assumes ρ0 = H0 = 0, which
means that a scale factor tends to some extremum.
But this does not means an asymptotic expansion or
contraction of the Universe is impossible. One simple
example is the case a ∝ tη, 0 < η < 1 when the Uni-
verse keeps expanding, but H decreases and tends to
zero.
Let us consider the power-law asymptote of the equa-

tion of state
ρ+ p −−−→

ρ→0
−Dρν (12)

and substitute it into (6). The integral in (6) is finite
at ν < 1/2, which yilds finite t0. In this case ρ ∝
∆t2/(1−2ν) −−−→

t→t0
0, H ∝ ∆t1/(1−2ν) −−−→

t→t0
0, ρ + p ∝

∆t2ν/(1−2ν). If 0 < µ < 1/2, pressure tends to zero.
This is a type IV singularity. If λ = 1 + 1/(1 − 2ν)
is a noninteger number, the higher derivatives of H ∝
∆tλ−1 diverge. The condition 0 < µ < 1/2 means
λ > 2, so the first derivative of H is finite, as well as
both sides of the Friedmann equation (5). The value of
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Table 1: Possible cosmological singularities except “Big Bang” and “Big Crunch”

T Nickname EoS ρ0 |p0| p0 + ρ0 a0 ρ p+ ρ a
t→ t0, ∆t = t0 − t→ 0

I “Big Rip” (1), w < −1 ∞ ∞ −∞ ∞ ∝ ∆t−2 ∝ ∆t−2 a ∝ ∆t−2/(3|1+w|)

I “Big Rip” (8), 1/2 < α < 1 ∞ ∞ −∞ ∞ ∝ ∆t2/(1−2α) ∝ ∆t2α/(1−2α) ln a ∝ ∆t2(1−α)/(1−2α)

III “Big Freeze” (8), α > 1 ∞ ∞ −∞ a0 ∝ ∆t2/(1−2α) ∝ ∆t2α/(1−2α) λ = (2α− 2)/(2α− 1)
II “sudden” (11), µ < 0 ρ0 ∞ −∞ a0 ρ− ρ0 ∝ ∆tA ∝ ∆tµA a→ a0 −H0∆t
IV (12), 0 < ν < 1/2 0 0 0 a0 ∝ ∆t2/(1−2ν) ∝ ∆t2ν/(1−2ν) λ = (2− 2ν)/(1− 2ν)
New “Big Squeeze” (12), ν < 0 0 ∞ −∞ a0 ∝ ∆t2/(1−2ν) ∝ ∆t2ν/(1−2ν) λ = (2− 2ν)/(1− 2ν)

t→ ∞
“Little Rip” (8), 0 < α < 1/2 ∞ ∞ −∞ ∞ ∝ t2/(1−2α) ∝ t2α/(1−2α) ln a ∝ t2(1−α)/(1−2α)

“Little Rip” (8), α < 0 ∞ ∞ 0 ∞ ∝ t2/(1−2α) ∝ t2α/(1−2α) ln a ∝ t2(1−α)/(1−2α)

“Little Freeze” (12), 1/2 < ν < 1 0 0 0 a0 ∝ t2/(1−2ν) ∝ t2ν/(1−2ν) a→ a0 −BtB

“Little Freeze” (12), ν > 1 0 0 0 ∞ ∝ t2/(1−2ν) ∝ t2ν/(1−2ν) ln a ∝ t2(ν−1)/(2ν−1)

λ is the same as in (10). We can introduce the effective
barotropic index w = p/ρ ∝ ∆t(2ν−2)/(1−2ν) → ∞.

If µ < 0 we have |p| −−−→
t→t0

∞. This is a new type of

the future singularity, which we name “Big Squeeze”.
It combines certain properties of the sudden singularity
and the type IV singularity. It corresponds to 1 < λ <
2 in (10). The first derivative of H and both sides of
the Friedmann equation (5) diverge. The asymptotics
near this singularity type are ρ ∝ ∆t2/(1−2ν) −−−→

t→t0
0,

H ∝ ∆t1/(1−2ν) −−−→
t→t0

0, |p| ∝ ∆t2ν/(1−2ν) −−−→
t→t0

∞,

a −−−→
t→t0

a0+const∆t
(2−2ν)/(1−2ν) → a0. It requires the

equation of state (12) with negative ν. The example
is the generalized Chaplygin gas which occurs in some
cosmological theories.

At 1/2 < ν < 1 the integral in (6) diverges and
t0 = ∞. In this case ρ ∝ t2/(1−2ν) −−−→

t→∞
0, H ∝

t1/(1−2ν) −−−→
t→∞

0, ρ + p ∝ t2ν/(1−2ν) −−−→
t→∞

0, a −−−→
t→∞

a0 − Bt(2ν−2)/(2ν−1). This is the mentioned above so-
lution which could be named the “Little Freeze”. In
this case the effective barotropic index w = p/ρ ∝
t(2ν−2)/(1−2ν) → ∞.

At ν = 1/2 we can take into account the possible
logarithmic factor and consider the asymptotic equa-
tion of state ρ + p −−−→

ρ→0
−Dρ1/2(ln ρ)β . At β > 1

we deal with the unconventional type IV singularity
with ln ρ ∝ ∆t1/(1−β), at β < 1 we deal with the
“Little Freeze” with ln ρ ∝ t1/(1−β). At β = 1 we
consider the equation of state with the asymptotic
ρ+ p −−−→

ρ→0
−Aρ1/2(ln ρ)(ln ln ρ)γ , etc.

At ν > 1 we deal with the expanding Universe and
ln a ∝ t(2ν−2)/(2ν−1) −−−→

t→∞
∞ at D > 0 in spite of

H ∝ t1/(1−2ν) −−−→
t→∞

0. This is the new “Little Freeze”

case. The higher derivatives ofH diverge. At ν = 1 the
Universe expands according to power law a ∝ t2/3D.
The effective barotropic index w = p/ρ→ −1.

2.2. Open and closed models

The second term in the right-hand side of (3) does
not affects the properties of the singularities with
ρ,H → ∞ and ρ → ρ0 ̸= 0,H → H0 ̸= 0. The only
exception is the “Big Crunch” singularity with a → 0
which we do not study in this paper.

But we must revise a possibility of the existence and
the properties of singularities with H → 0 or ρ→ 0. A
simple analysis shows that in all cases we have no new
type of singularity. The equation of state (12) with
ν < 1 could provide the type IV or the “Big Squeeze”
singularities only for the flat model.

3. Conclusion

We tabulate all main cases of the cosmological
singularities in Table 1. T and EoS mean type and
equation of state, λ corresponds to (10), A = 1/(1−µ),
B = 2(1 − ν)/(1 − 2ν). The terminal values denoted
ρ0 and a0 are finite and nonzero. Note that the “Big
Squeeze” and the type IV cases are possible only for
the flat Universe. The asymptote (11) of the equation
of state at 0 < µ < 1 corresponds to changing the type
of energy from phantom one to ordinary one or vice
versa. At µ > 1 it provides an eternal near-ΛCDM
expansion of the Universe.

Acknowledgements. Publications are based on the
research provided by the grant support of the State
Fund For Fundamental Research (project F64/42-
2015).

References

Caldwell R.R., Kamionkowski M., Weinberg N.N.:
2003, Phys. Rev. Lett., 91, 071301.

Nojiri S., Odintsov S.D., Tsujikawa S.: 2005, Phys.
Rev. D, 71, 063004.

Frampton P.H., Ludwick K.J., Scherrer R.J.: 2011,

Phys. Rev. D, 84, 083001.

140 Odessa Astronomical Publications, vol. 28/2 (2015)



ON THE MECHANISM OF THE FORMATION OF MAGNETO-
HYDRODYNAMIC VORTICES IN THE SOLAR PLASMA 

E. A. Pashitskii 

Institute of Physics, National Academy of Sciences of Ukraine, 
pr. Nauki 46, Kyiv, 03680 Ukraine, pashitsk@iop.kiev.ua 

 
ABSTRACT. Based on the magnetohydrodynamic 

(MHD) equations for an incompressible conductive viscous 
fluid, the possible mechanism of the formation of giant 
MHD vortices recently discovered in the solar atmosphere 
(chromosphere) is analyzed. It is assumed that these vor-
tices arise in the regions of the solar surface (photosphere) 
with ascending flows of hot plasma that arrives from the 
inner regions of the Sun as a result of thermal convection 
and is accelerated upward under the action of the chromos-
pheric plasma pressure gradient. It is shown that, under the 
assumption of plasma incompressibility and flow continu-
ity, the ascending plasma flows induce converging radial 
plasma flows, which create the convective and Coriolis 
nonlinear hydrodynamic forces due to the nonzero initial 
vorticity of the chromospheric plasma caused by Sun’s rota-
tion. The combined action of these two forces leads to the 
exponential acceleration of the solid-body rotation of 
plasma inside the ascending flow, thereby creating a vortex 
that generates an axial magnetic field, in agreement with 
astrophysical observations. 

Keywords: solar plasma, MHD vortex 
 

1. Introduction 
 
Recent publication [1] reported observation of cylindri-

cally symmetric vortex structures with characteristic radii 
of 500R   km in the solar atmosphere in the UV spectral 
region. There may be more than 104 such structures simul-
taneously on the Sun’s surface. These vortices penetrate 
through the entire chromosphere reaching the lower layers 
of the solar corona at an altitude of 2500 km. The exis-
tence of such magnetohydrodynamic (MHD) vortices, 
which were earlier predicted in [2–4], is now confirmed 
by means of precision optical measurements of the Dop-
pler shifts of the absorption lines of iron, calcium, and 
helium ions [5] corresponding to the vortex motion of the 
chromospheric plasma with velocities on the order of 
4 km/s. It was suggested in [1] that such MHD vortices 
could be responsible for the heating of the corona plasma 
up to temperatures of several million degrees due to dissi-
pation of the energy of Alfvén [6–10] and magnetosonic 
[11] waves excited by the vortex plasma motion. In [1], 
vortex structures were simulated numerically by using the 
MHD equations for a perfectly conducting ideal incom-
pressible fluid with allowance for the processes of radia-
tive energy transfer. It was assumed in [1] that an MHD 
vortex is accelerated due to its radial compression by con-

verging plasma flows, provided that the initial angular 
momentum of the vortex is conserved. 

However, as will be shown below, an MHD vortex in 
plasma cannot be regarded as a conservative system in 
which the angular momentum is constant, because there is 
a permanent influx of matter with a nonzero vorticity into 
the vortex core from the surrounding chromospheric 
plasma, i.e., such a vortex is an open nonequilibrium sys-
tem. As a result, the mechanism of the formation and evo-
lution of an MHD vortex in the solar chromosphere cannot 
be considered completely established. In the present work, 
we analyze a possible mechanism of the formation of an 
MHD vortex in the solar chromosphere and the accompa-
nying generation of magnetic fields and ohmic heating of 
the chromospheric plasma in the framework of an ap-
proximate description based on the MHD equations for an 
incompressible viscous fluid with a finite conductivity 
[12]. It is assumed that such vortices are initiated by the 
ascending flows of hot plasma that arise in some “hot 
spots” on the Sun’s surface, i.e., in the regions of the pho-
tosphere where hot plasma rises from the inner regions of 
the Sun as a result of convection. This hot plasma expands 
and rapidly flows upwards in the gravitational field 
through the surrounding colder chromospheric plasma, 
whose pressure rapidly drops with altitude. Under the 
conditions of the flow continuity and plasma incompressi-
bility, the ascending vertical flow creates converging ra-
dial flows. At a nonzero initial vorticity of the chromos-
pheric plasma caused by the Sun’s rotation, such converg-
ing flows give rise to convective and Coriolis nonlinear 
hydrodynamic forces. The combined action of these two 
forces leads to the acceleration of the solid–body rotation 
of plasma in the core of the MHD vortex, similar to the 
mechanism of the formation of air vortices in the Earth’s 
atmosphere (such as whirlwinds, tornadoes, and typhoons) 
earlier analyzed in [13]. Here, we analyze axisymmetric 
vortex solutions to the nonlinear MHD equations with 
separable variables that satisfy the continuity equation and 
cause the kinematic and magnetic viscosities of an incom-
pressible conductive fluid to vanish. Such solutions satisfy 
the principle of the minimum entropy generation in an 
open nonequilibrium system [13], i.e., correspond to the 
minimum dissipation rate of the kinetic and magnetic en-
ergies of the MHD vortex. It is shown that the vortex state 
is characterized by the exponential growth of both the 
azimuthal rotation velocity of the MHD vortex and the 
axial magnetic field, which qualitatively agrees with the 
observations [14,15] of the local concentration of the 
magnetic field under vortex motion of the solar plasma. 
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Such a growing magnetic field generates an azimuthal 
electric current in the external shell of the MHD vortex, 
which should lead to the ohmic heating of plasma in the 
chromosphere and lower layers of the solar corona. It is 
shown that, due to the instability of the growing tangential 
discontinuity of the azimuthal velocity at the boundary of 
the vortex core, strong local turbulence with an anoma-
lously high viscosity develops in the surface layer, which 
leads to the dissipation of MHD vortices. 

 
2. Basic equations for the description of MHD vor-
tices in the solar chromosphere 
 
To describe MHD vortices in the solar chromosphere, 

we will use the well-known set of MHD equations for an 
incompressible viscous conductive fluid [14]. 

We note that the MHD approximation can be used to 
describe electron--ion plasma only if the cyclotron radii of 
ions and electrons, as well as their Debye screening 
lengths and their free path lengths along the magnetic 
field, are smaller than the characteristic spatial scales of 
the problem (in particular, the MHD vortex dimensions). 
Such an approximation can also be used to describe a 
weakly ionized plasma with a high particle collision fre-
quency and low electric conductivity. At the same time, 
plasma in a magnetic field can be assumed to be incom-
pressible if the velocity of its macroscopic motion is lower 
than both the adiabatic sound speed /sc P    (where 
  is the adiabatic index) and the Alfvén velocity 

/ 4Ac H  . 
Let us analyze cylindrical axisymmetric (i.e., independ-

ent of the azimuthal angle  ) vortex flows of a conduc-
tive fluid (plasma) in which the self-consistent magnetic 
field has only the azimuthal and axial components, 

(0, , )zH HH . In this case, the set of MHD equations in 
cylindrical coordinates with allowance for the gravity ac-
celeration g  (which is directed vertically downward, i.e., 
in negative z  direction) takes the form 
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where r ,  , and z  are the radial, azimuthal, and axial 
components of the hydrodynamic velocity of the fluid, 
respectively,   and m  are the kinematic and magnetic 
viscosities, and the Laplace operator is 

 
2 2

2 2

1
r rr z
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   
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. (6) 

We note that terms 2 / r  and /r r    on the left-hand 
side of equations (1) and (2) describe the centrifugal force 
and the local Coriolis nonlinear hydrodynamic force, re-
spectively. 

In this case, the continuity equation for an incompressi-
ble fluid, div 0υ , and Maxwell's equation for the sole-
noidal magnetic field, div 0H , take the form 

 0; 0r r z zH
r r z z
    

   
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. (7) 

The simplest formal solutions to Eqs. (7) with the sepa-
rable variables r  and z  in the region 0r R  have the 
form 

 0( ) ; ( ) ;
.

r z z

z

r r z z
H h const

         

 
 (8) 

where the parameters   and   are related by the formula 
 ( 2 ) 0   . (9) 
 

3. Ascending flows of plasma in solar chromosphere 
 
The expression for the radial velocity ( )r r in Eq. (8) 

describes an incompressible radial plasma flow converg-
ing toward the axis that is induced by the ascending 
plasma flow the axial velocity of which increases linearly 
along z  axis, 0( )z zz z    . According to time-
independent equation (3), 
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such a velocity can appear under the action of the pressure 
P , which decreases with altitude according to the square 
law 
 2

0( ) ( )P z P az bz   , (11) 
where 0( )za g   and 2 / 2b  . As will be shown 
below, such a dependence of the pressure on z  can occur 
in the gravitational field at relatively low altitudes, pro-
vided that the plasma temperature sufficiently fast drops 
with altitude. 

Let us suppose that hot plasma in a certain region of ra-
dius 0R  in the solar photosphere flows up due to thermal 
convection in the gravitational field. This plasma expands 
and flows upward under the action of the buoyancy force 
in the colder denser chromospheric plasma. As the plasma 
flows up and expands, it plasma cools down, so that its 
temperature in the initial stage decreases almost linearly 
with altitude, 

 0( ) (1 )T z T z   ;       
0

ln 0
z

T
z



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. (12) 
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In this case, to within second-order terms in z , the 
barometric formula for the pressure of the chromospheric 
plasma in the Sun's gravitational field takes the form 
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For 0/ 2 Bmg k T  , this formula coincides with the 
adopted dependence (11) of the pressure on the z  coordi-
nate if we set 0 0/ Ba P mg k T   and 

0( / 2 )Bb mg k T a    (where m  is the mass of a hy-
drogen atom). As a result, we obtain two equations for 
determining two parameters, 0z  and  , entering into the 
expression for the increasing velocity of the ascending 
flow, 
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Taking into account the parameters of plasma in the 
lower layers of the solar chromosphere ( 10sc   km/s and 

0 6000T   K) and the value of the gravity acceleration on 
the Sun's surface ( 274g   m/s2), we obtain 

0 57.5z   m/s2 and 6
0/ 5.5 10Bmg k T    m-1. How-

ever, in this case, the parameter  , which has the dimen-
sion of the reciprocal length and characterizes the cooling 
rate of hot plasma with altitude, remains undefined, due to 
which the values of   and 0z  cannot be estimated inde-
pendently (see below). 

Note that the radius 0R  of the ascending flow should 
increase with altitude, which prevents separation of the 
variables r  and z  in the MHD equations. However, if the 
longitudinal inhomogeneity scale L  of the plasma flow 
radius is much larger than 0R , then, with a high degree of 
precision, we can set 0R const , which substantially 
simplifies the problem and allows us to investigate the 
main physical processes affecting the dynamics and evolu-
tion of MHD vortices in the solar atmosphere by means of 
an approximate procedure of separation of variables with-
out recourse to complicated computer simulations. 
 

4. Solid-body vortex rotation of plasma  
 
Let’s assume that at 0r R  the azimuthal components 

of the velocity and magnetic field are independent of z  
and have the form 
 ( ) ; ( )r r H r r       . (15) 

After the substitution of expressions (8) and (15) into Eqs. 
(1)–(5), a large number of terms on the right-hand sides 
(including those containing Laplace operator (6)) vanish. 
This corresponds to the zero kinematic and magnetic vis-
cosities of the incompressible conductive fluid (plasma), 

i.e., in fact to the nondissipative solid-body rotation of the 
MHD vortex core at 0r R . 

Substituting Eqs. (8) and (15) into Eqs. (1), (2), (4), and 
(5) and assuming that the parameters ,   and h  are 
functions of t , we obtain the following set of first-order 
equations that describe the dynamics of the MHD vortex 
core: 

 
2

2 2 1 ( )( )
2

P tt
r r


 

 


   


, (16) 

 2 ( ) 0d t
dt


    , (17) 

 ( ) 0dh h t
dt

   . (18) 

In this case, Eq. (4) is reduced to the condition 
/ 0d dt  , which is a consequence of the mutual com-

pensation of the nonlinear terms /r H r    and /r H r  
on the right- and left-hand sides of Eq. (4). This allows us 
to neglect the azimuthal component of the self-consistent 
magnetic field H  in the MHD vortex. 

Since, according to Eq. (9), we have 2  , solutions 
to Eqs. (17) and (18) have the form 
 ( ) (0) tt e   ,     ( ) (0) th t h e  , (19) 

where (0)  and (0)h  are the initial values of the angular 
plasma rotation velocity and axial magnetic field, respec-
tively. 

Equation (16) governs spatial distribution and temporal 
behavior of plasma pressure in the core of the MHD vor-
tex, which has the following form in the cyclostrophic 
regime of rotation of an incompressible fluid: 

 

2
2 2 2

0

2
2

( , , ) ( ) (0)
2

( ) ,
2

rP r z t P t

z t zg


  

  

     

 




 (20) 

where 0P  is the pressure at the vortex axis (see below), 
and 0zg g    . 
 

5. Exponential regime of MHD vortex evolution 
 
It follows from Eq. (19) that the angular velocity of the 

solid-body rotation of the MHD vortex core and the axial 
component of the self-consistent magnetic field increase 
exponentially with a characteristic time of 1 /expt  . 

We see that the source of the exponential acceleration 
of the vortex core rotation is the linear increase in the ax-
ial velocity of the ascending flow of incompressible plas-
ma, 0( ) ( )z zz z    , as it propagates upward in the 
gravitational field of the Sun through the solar chromos-
phere, in which the temperature and pressure decrease 
with increasing altitude. 

The value of   can be estimated by equating the veloc-
ity of the ascending flow 0( )z zz z     to the speed of 
sound at the upper boundary of the solar chromosphere, 
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2500L   km. In the rarefied upper layers of the chro-

mospheric plasma, the speed of sound is 2 /s Bc k T m  , 

where 43 10T    K, so that 20sc   km/s. Assuming that 

0z sc   , we find that 3/ 8 10sc L     s-1 and the 
characteristic time of the exponential evolution of the 
MHD vortex is exp / 2st L c   min. 

It should be noted that the exponential growth of the ax-
ial magnetic field ( ) ( )zH t h t  qualitatively agrees with 
the local concentration of the magnetic field during the 
vortex motion of the chromospheric plasma observed in 
[14, 15]. In this case, the local Alfvén velocity 

( ) ( ) / 4A zc t H t   inside the vortex core grows expo-
nentially in time (see (19)). 

According to expression (20), the plasma pressure on 
the vortex axis at 0z   in the cyclostrophic regime of 
vortex rotation is 

 
2

20
0 0(0, ) ( )

2
R

P t P t


   . (21) 

According to Eqs. (19) and (21), this pressure decreases 
exponentially in time and vanishes at the time 

  0
0 02 2

0

21 1ln ln /
2 (0) s

P
t c V

R  
 

     
, (22) 

where 0 0 (0)V R    is the initial azimuthal velocity of 
the vortex motion of plasma ( 0 sV c ). Since the negative 
pressure in the system leads to instability (collapse), an 
MHD vortex cannot exist at 0t t . The time 0t  can be 
approximately estimated if we assume that, in the order of 
magnitude, the initial value of the angular velocity (0)  
coincides with the average solar atmosphere vorticity 
caused by the nonuniform (liquid-like) rotation of the 
Sun's surface with the angular velocity varying with lati-
tude from 1 / 28   day on the equator to 1 / 33   day 
at a latitude of 75°. Estimates show that the initial vortic-
ity is 6(0) 2 10    s-1, which is one order of magnitude 
higher than the vorticity caused by the global Coriolis 
force on the solar surface. 

As a result, the initial azimuthal velocity of plasma at 
the boundary of a vortex of radius 0 500R   km is 

0 1V   m/s. Taking into account that the density of the 
chromospheric plasma on the Sun's surface is on the order 
of 95 10    g/cm3 and the temperature is 6000T   K 
and assuming that the density of hydrogen atoms is 

153 10n    cm-3, we find using the approximation of an 
ideal gas that the speed of sound is 10sc   km/s. Hence, 
with allowance for the above estimate of   and disregard-
ing dissipation of the vortex kinetic energy (see below), 
we find that the maximum time of the exponential evolu-
tion of an MHD vortex is 0 15 / 30t    min. 

On the other hand, it should be taken into account that the 
solid-body rotation of the vortex core begins to decelerate 
when the azimuthal velocity at 0r R  becomes compara-

ble with the speed of sound, because, at such velocities, the 
compressibility effects come into play and the fluid 
(plasma) acquires a nonzero bulk viscosity. Therefore, tak-
ing into account the exponential growth of the rotation ve-
locity of the vortex core, the maximum azimuthal velocity 

max
0 0( , ) ( )s s sR t V exp t c      is reached over a time 

01 / ln( / )s st c V  , which coincides with 0t . We note 
that the velocity of the vortex motion of the chromospheric 
plasma determined from the Doppler shift of the spectral 
lines is 4 km/s, which is half as large as the speed of sound, 
whereas according to computer simulations, the vortex ve-
locity at altitudes of 2500 km, where the speed of sound is 

20sc   km/s, can reach 15 km/s. 
The time 0 st t  also determines the maximum values of 

the axial component of the magnetic field inside the vortex 
core, 0(0) exp( )zH h t  , and the corresponding local 

Alfvén velocity max 2
0(0) / 4 exp( )Ac h t   . Assuming 

that the factor in front of the exponential in the last expres-
sion is on the order of the initial vortex velocity 0 1V   m/s, 
we find that max 10Ac   km/s. In this case, the magnetic field 
reaches its maximum value of max 250zH   G, which 
agrees with observational data [14, 15]. 

Note that the excitation of Alfvén and magnetosonic 
waves in the MHD vortex core cannot lead to vortex de-
celeration and plasma heating, because the Alfvén veloc-
ity grows according to the same exponential law as the 
azimuthal velocity of plasma rotation, whereas the speed 
of sound decreases due to a decrease in the pressure in the 
vortex core. 

 
6. Instability of the tangential discontinuity of the 
azimuthal velocity and local turbulence on the sur-
face of the MHD vortex core 
 
The exponential growth of the angular velocity of the 

solid-body plasma rotation in the MHD vortex core, where 
the radial and axial velocities are directly proportional to 
the radius r , is caused, as was mentioned above, by the 
combined action of the convective and Coriolis nonlinear 
hydrodynamic forces, which are equal in magnitude. 
However, in the external region 0r R , where the radial 
and azimuthal velocities are proportional to 1r , these 
forces, as can be easily verified, have opposite signs and 
exactly balance one other. As a result, there is no accelera-
tion of the initial vorticity (0) . Therefore, the azimuthal 
velocity experiences an exponentially growing jump (tan-
gential discontinuity) at the vortex core boundary. 

As was shown for the first time in [13], the exponential 
growth of the velocity jump leads to the absolute instabil-
ity of surface perturbations accompanied by the growth of 
their amplitude according to the double exponential law of 
the form 

 0( ) (0) exp ( )
2

t
k k

kV
t e t  


     
 

, (23) 

where (0)k  is the initial perturbation with the wavenum-
ber k  at 0t  . 
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Such instability develops much faster than the exponen-
tial acceleration of the solid-body rotation of the MHD 
vortex core. As a result, a strongly turbulent state is rap-
idly established near the vortex surface. Turbulence is 
localized in a layer of thickness  , which is comparable 
with the maximum amplitude of turbulent pulsations 

maxkl   . The amplitude reaches its maximum value 

maxmax
( )к k t   at the time maxt  at which the velocity of 

turbulent pulsations 

  0( ) ( ) (exp 1)
2

k
k k

d kV
t t t

dt


        (24) 

becomes equal to the speed of sound sc  and the effects of 
compressibility and finite viscosity come into play. It is 
well known that the wavenumber k  of the most unstable 
surface perturbations has the same order of magnitude as 
the reciprocal thickness of the transition layer 1 /  . 
Hence, we have 
 maxmax

/kl k      . (25) 

At max 1t  , expression (24) yields 

 max 0
0

1 ln sc
t t

V 
 

   
 

. (26) 

Thus, the peak amplitude of turbulent pulsations cannot 
exceed 

 0
0 0max

exp exp( )
2k
kV

t  


    
 

. (27) 

Taking the logarithm of expression (27) with allowance 
for relationships (23) and (25), we obtain to within loga-
rithmic accuracy the following transcendental equation for 
the characteristic scale length of turbulent pulsations l  
and, accordingly, the effective width   of the turbulent 
transition layer on the vortex core boundary: 

 
0 0

600
2 ln( / ) ln( / )

sс


    
 


 km. (28) 

Assuming that the amplitude 0  of the initial fluctua-
tions of quasineutral plasma is on the order of the Debye 

screening length 2/ 8B eD k T e n , which, at a chro-

mospheric plasma temperature of 6000T   K and an 
electron density of 153 10en    cm-3, is 510D   cm, we 
find that the thickness of the turbulent region surrounding 
an MHD vortex is 25   km, which corresponds to 
ln( / ) 25D  . If the amplitude of turbulent pulsations is 
known, then, applying the dimensionality analysis, we 
find that the turbulent viscosity of plasma inside the turbu-
lent layer is 7/ 3 8 10sc l       m2/s. 

The anomalously large effective viscosity of the turbu-
lent layer improves the stability of the MHD vortex core 
during its evolution. In this regard, it may be supposed 
that the observed filamentary structure of strong solar 
flares is caused by the simultaneous formation of a large 
number of MHD vortices in the photospheric hot spots. 

 

7. Deceleration of MHD vortices due to viscous en-
ergy dissipation and ohmic losses in the turbulent 
layer 
 
As we mentioned above, solutions with separable vari-

ables correspond to zero kinematic and magnetic viscosi-
ties of the incompressible conductive fluid (plasma) both 
inside the MHD vortex core at 0r R  and in the external 
region 0( )r R   . However, the kinetic energy of the 
vortex should dissipate inside the turbulent surface layer 
of thickness 0R   with an anomalously large turbulent 
viscosity   . The energy dissipation rate per unit vortex 
length is determined by the relationship 

 
2 2 2

0
0 2

( )
2

kindE R t
dV R

dt r
   



 
 

     
 . (29) 

On the other hand, the kinetic energy (per unit length) of 
the accelerated solid-body rotation of the vortex core is 
determined by the expression 

 
0

2 4 2
0

0

( ) ( , ) ( )
4

R

kinE t rdr r t R t


       . (30) 

In this case, the growth rate of the kinetic energy of vortex 
rotation accelerated under the action of the convective and 
Coriolis hydrodynamic forces is 

 4 4 2
0 0( ) ( )

2 2
kindE dR t R t

dt dt
  
       . (31) 

Comparing expressions (29) and (31), we obtain the fol-
lowing condition for the weak dissipation of the vortex 
energy: 0 / 2R      . For the above parameter val-
ues, 78 10     m2/s, 38 10    s-1, 0 500R   km, and 

25   km, the left- and the right-hand sides of this ine-
quality are nearly equal to one another, i.e., the rate of 
kinetic energy dissipation is nearly equal to the energy 
gain caused by the convective and Coriolis forces. As a 
result, in the final stage of evolution under the condition 
of strong turbulence in the surface layer, the MHD vortex 
reaches a regime of steady-state rotation and gradually 
dissipates. 

There is another energy dissipation mechanism in an 
MHD vortex that is related to ohmic losses leading to 
Joule heating. The heat is generated by the electric cur-
rents induced by the growing magnetic fields that flow in 
plasma with a finite conductivity. According to Maxwell's 
equations 

 4rot
c


 H j ,    1rot
c t


 

HE  (32) 

the generation of magnetic fields during the exponential 
evolution of MHD vortices should be accompanied by the 
generation of electric currents j  and electric fields E , 
which are related to one another via Ohm's law j E . 
However, taking into account that the vortex evolution is a 
relatively slow process, we can consider only the first of 
Maxwell's equations. In particular, the axial magnetic 
field, which is uniform inside the vortex core and vanishes 
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in the transition layer of thickness  , induces the azi-
muthal current 

 
( ) ( )( )

4 4
zH tc c h tj t
r  

 
    


. (33) 

in this layer. 
The azimuthal current of density (33) that flows inside 

the turbulent surface layer should lead to heat release in 
this layer, the power of which per unit vortex length is 

 2 2 2
0 02 / ( ) / 8Q R j c R h t       . (34) 

Here 2 /e e ee n m    is the electron conductivity of the 
chromospheric plasma with the electron density 

153 10en    cm-3, em  is the mass of an electron, and 
1310e

  s is the average time of electron–electron and 
electron–ion Coulomb collisions at an electron tempera-
ture of 410eT   K. Hence, in the order of magnitude, we 
have 910   s-1. 

As a result, setting 0( ) (0) exp( )h t h t  , we find that 
the Joule heating power in the final stage of MHD vortex 
evolution is 1Q   MJ/km. 

Joule losses must slow down the MHD vortex rotation, 
determined by relationships (38). The slowing down will 
be weak if 

 4 2
0

( )
( ) ( )

2
kindE t

R t Q t
dt


    . (35) 

Taking into account that the angular velocity ( )t  and the 
longitudinal magnetic field ( )h t  grow according to the 
same exponential law, we can rewrite inequality (43) in 
the form 

 
2 2

2
0 0

(0)
1Ac c

R V  


   
 , (36) 

which shows that, for the above parameter values, 
38 10    s-1, 910   s-1, 25   km, and 

0 500R   km, the Joule losses weakly affect MHD vortex 
dynamics if 0 0AV c . 

Due to ohmic heat release in the MHD vortex shell, ad-
ditional heating and ionization of the chromospheric 
plasma, followed by its recombination upon cooling, take 
place. This should lead to the glow of MHD vortices in 
the visible and UV spectral regions. Since MHD vortices 
can reach the lower layers of the solar corona, heat re-
leased due to the ohmic heating of plasma, along with that 
released due to the dissipation of the magnetic and kinetic 
energies of vortices during their decay, can play a signifi-
cant role in the heating of the solar corona to temperatures 
as high as 106 K. However, this issue requires additional 
study, which goes beyond the scope of the present work. 

To conclude, it should be emphasized that the initial lo-
cal vorticity of the solar plasma in the regions where 
MHD vortices begin to form can have opposite signs, so 
that the vortices in different solar hemispheres can rotate 
in different directions. Accordingly, the self-consistent 
axial magnetic fields generated by such vortices should 
have opposite directions. Thus it can be energetically ad-
vantageous for the magnetic field lines of the adjacent 
pairs of such vortices and anti-vortices to be closed into 
loops, which are indeed often observed in solar atmos-
phere. 
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THE PROPERTIS OF TIDAL FORCES IN THE KERR METRIC
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ABSTRACT. The expression for the tidal forces of
the two relativistic protons at a distance of the order
of the Compton wavelength near a rotating black hole
is found. The analysis shows that the tidal forces
are dependent on the plane of incidence and sharply
increase with increasing Lorentz factor.

Keywords: General relativity - geodesic deviation:
Black hole - Kerr metric: Tidal forces.

1. Introduction

The problem of deviation of geodesic is important in
the study of motion of n-interacting particles in strong
gravitational fields and in particular, the study of the
deformation of the gas and dust clouds in the vicinity
of black holes.
When driving two or more closely spaced particles in

curved space-time their is a deviation of geodesic lines.
General view of the geodesic deviation equation of the
n-dimensional Riemannian manifold was obtained by
T. Levi-Civita in 1925 Ref. 1. For the 4-dimensional
space deviation equation for structureless massless par-
ticles was investigated in Refs. 2–3 by J.L. Sing.
The system of units G = c = 1 is used in the paper.

2. The Kerr Metric

The Kerr’s metric in Boyer-Lindquist coordinates
has the form [4]:

ds2 = ρ2
∆

Σ2
dt2 − Σ2

ρ2

[
dφ− 2aMr

Σ2
dt

]2
sin2θ −

ρ2

∆
dr2 − ρ2dθ2 , (1)

where
∆ = r2 − 2Mr + a2 , (2)

ρ2 = r2 + a2cos2θ , (3)

Σ2 = (r2 + a2)2 − a2∆sin2θ , (4)

and M is the black hole mass, aM its angular mo-
mentum 0 ≤ a ≤ 1. The event horizon of the Kerr’s
black hole corresponds to the coordinate:

rh =M +
√
M2 − a2. (5)

The static limit surface is defined by the value:

rst =M +
√
M2 − a2cos2θ . (6)

The region of space-time between the static limit and
the event horizon is called ergosphere.
In view of the equation (1) metric tensors are Ref.5:

gij =


Σ2/ρ2∆ 0 0 2aMr/ρ2∆
0 −∆/ρ2 0 0
0 0 − 1

ρ2 0

2aMr/ρ2∆ 0 0 −(∆− a2sin2θ)
/ρ2∆sin2θ

.
(7)

The nonzero components of the curvature tensor in the
Kerr metric have the form [5]:

R1023 = −aMcosθ(3r2 − a2cos2θ)
1

ρ6
, (8)

R1230 = −aMcosθ

ρ6
(3r2 − a2cos2θ)Σ−2

×[(r2 + a2)2 + 2a2∆sin2θ] , (9)

R1302 =
aMcosθ

ρ6
(3r2 − a2cos2θ)Σ−2

×[2(r2 + a2)2 + a2∆sin2θ] , (10)

−R3002 = R1213 = −aMcosθ

ρ6
(3r2 − a2cos2θ)

×3a∆1/2

Σ2
(r2 + a2)sinθ , (11)

−R1220 = R1330 = −Mr

ρ6
(r2 − 3a2cos2θ)

×3a∆1/2

Σ2
(r2 + a2)sinθ , (12)
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Figure 1: The deviation of curve Γ(v) from curve Γ(v+
δv).

−R1010 = R2323 =
Mr

ρ6
(r2 − 3a2cos2θ)

= R0202 +R0303 , (13)

−R1313 = R0202 =
Mr

ρ6
(r2 − 3a2cos2θ)Σ−2

×[2(r2 + a2)2 + a2∆sin2θ] , (14)

−R1212 = R0303 = −Mr

ρ6
(r2 − 3a2cos2θ)Σ−2

×[(r2 + a2)2 + 2a2∆sin2θ] . (15)

3. The equations of geodesic deviation

If there is a pair of adjacent curves Γ(v) and Γ(v+δv)
(Fig.1 ), then the equation of geodesic deviation for
structureless infinitely close particles has the form:

d2ηi

ds2
+RijkmU

jηkUm = 0 , (16)

where ηi — infinitesimal vector deviation, Rijkm =

gilRljkm — Riemann tensor, Um— 4-speed.
A solution of equation (16) is a vector of deviation

of world lines that covariantly describes the relative
acceleration between geodesic lines.
Let us consider the equations of geodesic deviation in

the Kerr metric. We find the equation of geodesic de-
viation for relativistic structureless particles that have
only radial velocity component, hence:

U i = Γ(1, V, 0, 0) (17)

where Γ = 1√
1−V 2

is Lorentz factor.

From the equations (16) and curvature tensor in the
Kerr metric (8)—(15) in this case, the equation of the
deviation will have the form:

D2η0

ds2 = Γ2
[
g03(R3002 −R0303) + g03V (R1230 +R1330

−R1302) + V 2(g00R1010 − g03R1313)
]
, (18)

D2η1

ds2
= −g11Γ2R1010(1 + V ), (19)

D2η2

ds2
= g22Γ2

[
R0202 + V (R1220 +R1302)−R1212V

2
]
,

(20)

D2η3

ds2 = Γ2
[
−g33R0303 + g33V (R1230 +R1330 −R1302)

+V 2(g03R1010 − g33R1313)
]
. (21)

From these equations it is seen that the relative
acceleration between the infinitely close to the world
lines will be directly proportional to the square of the
Lorentz factor.
To evaluate the tidal forces of the proton in the Kerr

metric we use the following restrictions:

• let proton with mass mp = 1.67 · 10−27kg is in
motion along a geodesic so that the deviation is
proportional to the Compton wavelength λpC =
1.32 · 10−15m,

• let movement only occurs in the equatorial plane
θ = π

2 ,

• the black hole has the following parameters: M =
106, a = 0.98,

• motion occurs at a coordinate of distance of r from
horizon of black hole r = 10−5rh,

• the proton velocity is V = (1− 10−15)c.

If we consider the assumptions given above, then cal-
culations made by us lead to the work of the tidal forces
F = 4.156 · 109 Newton’s. For example, the same force
on the surface of the Sun is about 4.5 · 10−26 Newtons.
For different values of velocities of particles obtain

the tidal forces by numerical calculations for protons
are given in the Fig. 2. The graph shows that the
tidal forces increase with the speed of the proton in
the center of mass of the order of 10−19 Newtons with
V = 0.9c up to 1019Newtons with V = (1− 1020)c.
Dependence of tidal forces on the mass and the spe-

cific angular momentum of the black hole is shown in
Fig. 3 and Fig. 4 respectively. It is important to note
that tidal forces are maximal for black holes of stellar
mass and are minimal for a supermassive black holes.
For example, if the black hole mass is of about mass
of Sun then it creates tidal forces near horizon order
1015 Newtons and supermassive black holes with mass
109M⊙ creates tidal forces order 106 Newtons. A sim-
ilar effect was observed in Ref. 6 for a Schwarzschild
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Figure 2: The dependence of the tidal force F on the
speed of the proton V .

Figure 3: The dependence of the tidal force F on the
black hole mass M .

black hole. Also if there is an increase of specific an-
gular momentum of the black hole then there is an
increase of the tidal forces near the horizon.
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Figure 4: The dependence of the tidal force F on the
specific angular momentum of the black hole a.
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ABSTRACT. We have analyzed the spectral data ob-
tained by XMM-Newton, Swift, Chandra, and INTEG-
RAL space observatories for several isolated AGNs from 
2MIG catalogue, for which the available X-ray data were 
accessed. Among these objects were CGCG 179-005, 
NGC 6300, NGC 1050, NGC 2989, WKK 3050, ESO 
438-009, and ESO 317-038. We determined correspond-
ing spectral models and values of their parameters (spec-
tral index, intrinsic absorption etc.). X-ray spectra for 
bright galaxies, NGC 6300 and Circinus, were analyzed 
up to 250 keV and their characteristics of emission fea-
tures were determined in 6-7 keV range.  

We present the results for NGC 1050, NGC 2989, ESO 
317-038, and ESO 438-009, for which their spectral pa-
rameters were obtained for the first time.  

Keywords: Active galaxy nuclei – X-ray; Objects: 
NGC 1050, NGC 2989, ESO 317-038, ESO 438-009 

 

1. Introduction 
 

The most galaxies with active nuclei (AGNs) in the Lo-
cal Universe are in a low-luminosity state (Ptak et al., 2000; 
Ho et al., 2009; Maia et al., 2003; Pulatova et al., 2015). In 
this sense, the principal question is why this state is related 
also to X-ray activity of the isolated galaxies with active 
nuclei (AGNs). The answer will be helpful to explain the 
AGN’s paradigm in detail as well as to get a response to the 
internal evolution of galaxy activity as well as to investigate 
the influence of halo matter (baryonic/dark) on the forma-
tion and productivity of AGN’s engine.  

With this goal we have analyzed the data obtained by 
XMM-Newton, Swift, Chandra, and INTEG-RAL X-ray 
observatories to find the X-ray spectra of a good quality 
for several isolated AGNs from 2MIG catalogue (Ka-
rachentseva et al., 2010). We have selected such objects as 
CGCG 179-005, NGC 6300, NGC 1050, NGC 2989, 
WKK 3050, ESO 438-009, and ESO 317-038 and deter-
mined their main spectral properties. In this paper we de-
scribe briefly our results for NGC 1050, NGC 2989, ESO 
438-009, and ESO 317-038, for which their spectral pa-
rameters were not previously studied.  

 
2. Data processing 
 
The Swift/BAT spectra were derived from the 70-

month hard X-ray Survey (Baumgartner et al. 2013). The 
reduced Swift /XRT products were taken by using the 
XRT products generator (http://www.swift.ac.uk/user_ 
objects/) (Evans et al. 2007, 2009, 2010) with HEASOFT 
6.15.1 software package in UKSSDC (UK Swift Science 

Data Centre) archive. We only used the data taken in the 
photon counting (PC) mode in such a manner that we 
were able to identify the precise locations of our targets 
without any contamination. Only events with energy in the 
range of 0.3–10 keV with grades 0–12 were included. 

The XMM-Newton MOS and PN data were pro-cessed 
using the standard software packages XMM SAS ver. 11.0 
(Science Analysis Software) according to the guidelines of 
XMM-Newton User’s Manual. Because of its higher sen-
sitivity, we use the EPIC/PN spectrum for the analysis of 
NGC 1050, although duration of exposure for EPIC/MOS 
has been slightly longer (but it has less data as compared 
to PN). Only patterns corresponding to single and double 
events (pattern ≤4) were taken into account for the PN 
camera. Filter FLAG=0 was applied to exclude bad pixels 
and events that are at the edge of a CCD. The ARFGEN 
and RMFGEN tasks were used to create ancillary and 
response files. Spectra were binned according to the lumi-
nosity of each source. 

The XMM-Newton/XRT and BAT spectra were treated 
together and analyzed using XSpec ver.12.6 software. 
Since observations for each instrument are not simultane-
ous, a cross-calibration constants C have been introduced 
in our models. In order to derive the luminosities we used 
the standard ΛCDM cosmological model with parameters 
H0 =70 (kms)/Mpc, =0.73, m=0.27 (Bennett, 2003) as 
well as the Galactic absorption (see Table 1) has already 
been taken into account in the fitting. 

The Chandra data was analyzed with CIAO software 
package (Chandra Interactive Analysis of Observa-
tions, version 4.7 (Fruscione et al. 2006) and the latest 
realize of calibration files. The standard reprocessing and 
screening routines to create new level=2 event files were 
made using chandra_repro script. To extract the source 
and background spectra with ARF and RMF files we have 
used specextract script. The XSpec environment version 
12.6.0 was used to model all spectra with absorbed power 
law model. The errors of best-fit parameters correspond of 
1 confidence level. 

 

3. Results  
 
The main spectral parameters of NGC 1050, NGC 

2989, ESO 317-038 and ESO 438-009 are given in Table 
1, namely, Column (1): Object name; Column (2): Right 
Ascension from NASA/IPAC Extragalactic Data base 
(NED); Column (3): Declination (NED); Column (4): 
Redshift (NED); Column (5): X-ray Observatory/ Instru-
ment; Column (6): Observation exposures in ks; Column 
(7): Galactic absorption in units of 1020 cm-2  (by  Kalberla  
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et al. 2005 (LAB map)); Column (8): Luminosity, L, in 
units of 1040 erg/s in 2-10 кеV range; Column (9): Intrin-
sic absorption in units of 1022 cm-2; Column (10): Photon 
Index. 

NGC 1050 has been observed by XMM-Newton (2013-
02-27, ID 0693540201). X-ray spectrum has a bad quality 
and the data beyond ~5 keV are absent. It was fitted by the 
model phabs*(zbbody+zpo), where tbabs corresponds to 
the Galactic absorption. Because of a lack of data in the 
middle range, we have fixed a value of the photon index 
as Г = 2.0. We determined the values of flux in 0.5-2.0 
keV as (5.64±0.59)·1014 ergs/cm2/s and black- 

body model as kT = 189±23 eV (2/dof = 15.41/11 = 
1.4). Other parameters are summarized in Table 1 and the 
best fitting spectrum is presented in Figure 1 (left panel).  

X-ray observational data for NGC 1050 are presented 
for the first time. 

NGC 2989 has been observed twice by Swift/ XRT 
(2008-10-06/08), duration of exposure in XRT/PC mode 
was 14125 s та 13672 s. A lower limit of spectrum was 
2.5 keV. We fitted it by the model phabs* zphbs*zpo, 
where phabs corresponds to the Galactic absorption. A 
value of the photon index was determined as 
Г=1.69±0.68, 2/dof = 9.06/9. The main parameters are 
summarized in Table 1 and its spectrum is presented in 
Figure 1 (left panel). The errors are caused by the poor 
quality of the XRT data.   

ESO 317-038 has been observed six times by 
Swift/XRT from 2011-02-24 to 2011-03-20, duration of 
exposure in XRT/PC mode was 623  4909 s.  A spectral 
analysis was conducted altogether with the Swift/BAT 
observational data and allowed us to enlarge a spectral 
range till 195 keV. A lower limit of spectrum was also 2.5 
keV. We fitted its spectrum by the model phabs*zphbs* 
cutoffpl, where phabs corresponds to the Galactic absorp-
tion. We fixed a value of the photon index as Г=1.7 and 
energy as Ecut-off = 500 keV. Luminosity is 2.71·1041 ergs/s 
in 2.0-10 keV, 6.31·1042 ergs/s in 14-195 keV (Swift BAT 
70-Month Hard X-ray Survey). The main parameters are 

summarized in Table 1 and its spectrum is presented in 
Figure 1 (right panel). The errors are caused by the poor 
quality of the XRT data.   

 ESO 438-009 has been observed three times by 
Swift/XRT from 2010-11-02 to 2010-11-08, duration of 
exposure in the XRT/PC mode is 11726429 s.  A spectral 
analysis was conducted altogether with the Swift/BAT 
observational data and allowed us to enlarge a spectral 
range till 195 keV. A lower limit of spectrum is 0.5 keV. 
We fitted its spectrum by the model phabs*zxicpf*cut 
offpl, where zxipcf corresponds to the absorption by the 
ionized matter with the overlap factor С (we fixed С=1). 
We determined the photon index as Г=1.86±0.06, cut-off 
energy was fixed as Ecut-off = 500 keV. Intrinsic ionized 
absorption is NH= 4.61+4.76

-3.40 1021
 сm-2 and ionization rate 

log ξ = 2.35-0.44
+0.68; 2/dof=134.51/116. Luminosity is 

Lx=2.73 1042 ergs/s in 0.5-2.0 keV, 4.94·1041 ergs/s in 2.0-
10 keV, 1.24·1043 ergs/s in 14-195 keV (Swift BAT 70-
Month Hard X-ray Survey). The main parameters are 
summarized in Table 1 and its spectrum is presented in 
Figure 1 (right panel).  

 
 
4. Brief discussion 
 
One can see, the studied galaxies are of low activity 

(X-ray luminosity is less than 1042 ergs/s) that is consis-
tent with our previous research (Pulatova et al., 2015), 
where we found that isolated AGNs in the Local Universe 
are mostly faint in X-ray. Altogether with these new data, 
a mean luminosity for 17 the 2MIG isolated AGNs with-
out companions is Lx 1.91042 ergs/s in the soft 2-10 keV 
range (see, for comparison, results by Halderson (2001). 
The same estimations were derived by Anderson et al. 
(2013) for subsets of 2MIG galaxies: the  average lumi-
nosity LX within 50 kpc is 1.01040 ergs/s. They found also 
that that 1/2 of the total emission is extended and about 
1/3 of the extended emission comes from hot gas.  

Table 1. The main spectral parameters of NGC 1050, NGC 2989, ESO 317-038 and ESO 438-009 for the absorbed power 
law fits to the data 

(1) 
Object 
(Type) 

(2) 
RA  

(deg) 
(J2000) 

(3) 
Dec. 
(deg) 

(J2000) 

(4) 
z 

(5) 
Instrument 

(6) 
Exposure 

(ks) 

(7) 
NH 

1020 cm-2 

(8) 
L, 

1040 erg/s 

(9) 
NH 

 

(10) 
Phot. 
index 

NGC 1050 
(Sy2) 

40.648 34.764 0.013 XMM-
Newton/ 
EPIC PN 

9.507* 5.67 2.15±0.23  
(0,5-2 keV) 

47.430.81 
(1022 cm-2) 

2.0 
(fixed)  

NGC 2989 
(AGN) 

146.355 -18.374 0.014 Swift/ 
XRT 

27.8* 4.34 2.19 
(0,5-2 keV) 

 

10.0
05.007.5 

  
(1020 cm-2) 

 

1.690.68 

ESO  
317-038 
(AGN) 

157.440 -38.349 0.015 Swift/ 
XRT+BAT 

14.4*+8482 6.0 27.1 
 

59.32
12.1405.17 

  
(1022 cm-2) 

 

1.7 
(fixed) 

ESO  
438-009 
(Sy1.5) 

167.700 -28.501 0.024 Swift/ 
XRT+BAT 

17.4*+7242 5.26 357 
 

76.4
40.361.4 

   
(1021

 сm-2) 

1.890.08 

* Exposure time in ks (EPIC PN/Swift XRT) after the data screening 
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NGC 1050 NGC 2989 
 

 
ESO 317-038 
 

ESO 438-009 

 
Figure 1: Unfolded spectrum of the isolated galaxies with active nuclei (their parameters are in Table 1).  
Top: NGC 1050 and NGC 2989; the spectra were obtained in 0,5-10 keV range with XMM-Newton/XRT/BAT (best fitting 
spectra) and Swift respectively. Down: ESO 317-038 and ESO 438-009; the broad-band spectra were obtained in 0,5-150 
keV range with Swift and INTEGRAL (red) 
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The authors (Melnyk et al., 2013) in their research 
with two selected samples XMM-LSS field (X-ray  
galaxies and AGNs) have studied an environment effect 
and found that AGNs, including soft X-ray AGNs, when 
comparing to X-ray galaxies, prefer to be located in 
lower galaxy overdensities. It is in a good agreement 
with our estimations on the influence of choice of isola-
tion criteria for spatial analysis and physi-
cal/morphological properties of host galaxies (Vavilova, 
2009; Elyiv, 2009). At the same time, we do not confirm 
the conclusion that the softest AGNs are of Sy1 type.  

We noted in our research (Pulatova et al., 2015) that 
Sy 1 type galaxies appear to be more luminous that of Sy 
2 type. Some AGNs of our sample have the spectral en-
ergy distribution almost flat from the infrared to X-ray 
part of spectrum, as result the spectral index is ~ 1, al-
though it is usually steeper.  

The stronger X-ray flux, than X-ray continuum is pro-
duced by lower energy photons. These photons are scat-
tered to higher energies by relativistic electrons using 
Compton scattering. The fraction of the power emitted in 
the X-ray flux is almost four times bigger in AGNs than in 
normal galaxies. Using such property, we conclude that 
X-ray soft emission from the studied objects is in favor of 
the presence of AGN’s engine. Additional evidences are 
the normalized excess variances (variability amplitudes) 
that anti-correlate with black hole masses. Our prelimi-
nary estimations point out (Chesnok et al., 2010) that the 
isolated AGNs in the Local Universe posses a low-mass 
black holes (intermediate values, 105-106 MSun) being 
closer to their primordial mass (Ludlam et al., 2015).  

To investigate the correlation between photon index of 
power law model and X-ray flux for each AGNs we have 
used additional data of XMM-Newton and Chandra ob-
servatories. Figure 2 shows the distribution of slopes of 
spectra of the isolated AGNs over X-ray flux. It was found 
a clear correlation between these values: the slope is 1.3. 
At the same time, we did not find correlation between the 
photon index and luminosity of the studied X-ray isolated 
AGNs. 
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Figure 2: The Flux - Photon Index relation for X-ray sam-
ple of the isolated AGNs. The solid line corresponds to the 
simple power law model with slope 1.3, while two dotted 
lines correspond to the standard deviation. 
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